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ABSTRACT

Traditional approaches for validating molecular simulations rely on making software open source
and transparent, incorporating unit testing, and generally employing human oversight. We propose
an approach that eliminates software errors using formal logic, providing proofs of correctness. We
use the Lean theorem prover and programming language to create a rigorous, mathematically ver-
ified framework for computing molecular interaction energies. We demonstrate this in LeanLJ, a
package of functions, proofs, and code execution software that implements Lennard-Jones energy
calculations in periodic boundaries. We introduce a strategy that uses polymorphic functions and
type classes to bridge formal proofs (about idealised Real numbers) and executable programs (over
floating point numbers). Execution of LeanLJ) matches the current gold standard NIST benchmarks,
while providing even stronger guarantees, given LeanLJ’s grounding in formal mathematics. This
approach can be extended to formally verified molecular simulations in particular and formally
verified scientific computing software, in general.
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1. Introduction

Molecular simulations constitute an essential computa-
tional tool for understanding atomic-scale phenomena,
playing a critical role in predicting the physicochemi-
cal properties underlying fields such as materials science,
chemistry, and biophysics [1]. For instance, accurate sim-
ulations enable the study of molecular interactions that
dictate gas adsorption behaviours in porous materials
[2, 3], influence solvation dynamics in chemical solu-
tions [4], and affect catalytic reactions on material sur-
faces [5]. Accurate modelling of particle interactions lies
at the core of molecular simulations [6]. Among the
most fundamental and extensively used models are the
Lennard-Jones potential, describing van der Waals inter-
actions, and Coulomb potentials, capturing electrostatic
forces. The Lennard-Jones potential, specifically, finds

v
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significant application in representing non-bonded inter-
actions in chemically relevant systems such as simple flu-
ids [7], noble gas clusters [8], hydrocarbon fluids [9], and
molecular adsorption phenomena in zeolites or metal-
organic frameworks (MOFs) [10, 11]. It also describes the
interaction between a pair of neutral atoms or molecules
based on their distance [12-14], and efficiently cap-
tures the balance between attractive and repulsive forces
[15, 16]. Coulomb interactions are particularly critical
for describing electrolyte solutions [17], protein-ligand
binding affinities [18], and charged colloidal systems
(18, 19].

To accurately approximate infinite molecular systems
from computationally manageable finite-sized simula-
tions, periodic boundary conditions (PBC) are conven-
tionally employed [20, 21]. In chemical simulations,
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Table 1. Errorsin scientific computing software, and typical interventions. Our goal is to develop an approach to address syntax, runtime,
and semantic errors in Lean at the ‘editor’ stage, before code is compiled.

Category of Error Example Intervention Lean

Syntax Not closing parentheses Editor Editor
Runtime Accessing element in list that does not exist Run program, program gives error message Editor
Semantic Missing a minus sign, transposing tensor Human inspection of the code; test-driven Editor

indices

Floating-point/ Round-off Subtracting small values from large values,

ill-conditioned matrices

development; observing anomalous
behaviour

Modifying simulation methods, using double -
precision floats

PBC enables the study of bulk-phase properties without
boundary effects, such as predicting phase behaviours
in liquid water [22], ionic solutions [23], or polymer
melts [24]. Furthermore, the minimum image conven-
tion ensures that computational resources are efficiently
utilised by considering only the nearest periodic images
in calculations [25], which is particularly important in
simulations of dense chemical environments like ionic
liquids or liquid crystal phases.

Software tools like LAMMPS and Gromacs [26-28]
allow users to simulate the dynamics of large molecular
systems. However, the sheer complexity of these soft-
ware packages and the systems they intend to model
presents challenges in making simulations transparent,
reproducible, useable by others and extensible (TRUE)
[29]. For example, the SAMPL Challenges (Statistical
Assessment of the Modelling of Proteins and Ligands)
[30] and the Industrial Fluid Properties Simulation Chal-
lenges [31, 32] task computational researchers to predict
the solvation or binding free energies of small molecules
or the thermophysical properties of fluids. Each year,
researchers submit highly variable answers, reflecting dif-
ferences in modelling choices by the researchers (e.g.
force fields, simulation conditions, free-energy extrap-
olation strategies, etc.), as well as more hidden, subtle
differences amongst software packages (e.g. default set-
tings for managing Lennard-Jones cut-off and settings
for Ewald summation). Projects such as the Molecular
Simulation Design Framework (MoSDeF) [29, 33, 34]
and the Molecular Sciences Software Institute (MolSSI)
[35] address these issues by providing reproducible work-
flows for molecular simulation setup, and by teaching and
promoting best practices in software development [36].
Simulation software can also be validated by comparing
to benchmarks, such as those on the National Institute
of Standards and Technology (NIST) Standard Reference
Simulation Website (SRSW) [37].

We propose an alternative paradigm for improving
reliability of molecular simulations. To illustrate, con-
sider the taxonomy of programming errors in Table 1.
The simplest are syntax errors: these are addressed imme-
diately because the code cannot compile, the editor
highlights the mistake, and the programmer fixes it.

Runtime errors occur during code execution, and may
arise when users run the program under conditions not
anticipated by the software developers. Nonetheless, run-
time errors typically provide a helpful error message
pointing toward the source of the issue. The deepest
issues are semantic errors in the meaning of the soft-
ware: Python would not complain about misinterpret-
ing a scientific principle or incorrectly transcribing math
into code - it is simply not designed for that. Floating-
point and round-off errors create numerical inaccuracies,
since computers do not operate with infinite mathemati-
cal precision. These are addressed by judicious choices of
simulation settings and algorithm choices, and by check-
ing conditions like energy conservation after simulation
completion [38].

In this work, we propose a strategy for catching syn-
tax, runtime, and semantic errors at the ‘editor’ stage,
namely, before the code is compiled. Our approach stems
from the formal methods community in computer sci-
ence, which seeks to prove when software is correct by
construction before it is run (also known as static pro-
gram analysis), unlike traditional testing, which checks
for errors by running a program with different inputs.
This approach is handy in areas where even small errors
can have significant consequences, such as hardware
design and critical software systems. A prominent exam-
ple is the Pentium FDIV bug in Intel processors in the
early 1990s, the subject of a multi-million dollar recall
stemming from a few misplaced bits in chip software [39].
Now, formal verification approaches prove the correct-
ness of such arithmetic operations in manufactured chips
[40]. Our approach most closely resembles that of Selsam,
et al., who explored how formal methods can be applied
to machine learning systems in Certigrad [41] (Figure 1).
By proving the correctness of each step mathematically,
this approach exposes errors that might otherwise slip
through traditional empirical testing. They highlight the
ability of theorem provers like Lean to eliminate entire
classes of high-level errors that arise in complex software
systems by enforcing correctness through formal reason-
ing. They demonstrate their approach by building a vari-
ational auto-encoder in Lean, proving properties about
their implementation of stochastic gradient descent.
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Standard approach: test code empirically
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Formal approach: verify code mathematically
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Specify Program
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Hybrid method: use tests and proofs
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Figure 1. Comparison of code correctness approaches (adapted from [41]): the standard test-debug cycle, formal verification using
proofs, and a hybrid method combining tests and formal proofs, that we adopt here.

Most prior work on formal methods has focussed
on floating point operations [42]. In molecular simula-
tions, these are typically insignificant, but they can lead to
issues in certain settings, such as when programs are run
with less precision to increase speed, or under extreme
conditions. Tran and Wang [43], explored using inter-
val arithmetic to model the propagation of these uncer-
tainties in molecular dynamics simulations. Our work
sets aside the imprecision of floating-point arithmetic,
and instead focuses on verifying higher-level logic and
mathematics. Incorporating interval arithmetic into our
approach would in principle be possible, but these tools
are currently in development [44].

Lean 4 is a theorem prover and functional program-
ming language designed to write and verify mathematical
proofs, as well as write formally-verified software [45].
Unlike traditional programming languages used for sci-
entific computing (C, FORTRAN, Python, etc.), Lean
provides a formally verified framework in which proofs
of correctness can be explicitly constructed and checked
[46]. We previously used Lean to formalise chemical
physics [47]. Lean is also being used to formalise theo-
ries in high-energy physics [48]. We also recognise Tomas
Skiivan’s ongoing Scilean project, which is working
out methods for automated differentiation and efficient,
array-based computations in Lean [49].

In our work [47], we showed how theories in sci-
ence can be rigorously encoded using the Lean theorem
prover, proving the correctness of the derivations,
grounding them in the foundations of mathematics.
We formalised derivations of the Langmuir and BET
adsorption models, meticulously defining assumptions
and derivations to ensure mathematical rigour. That

work was limited to proofs in Lean - we extend
that now to executable programs with formally-verified
properties.

In this paper, we first present a familiar, informal
description of Lennard-Jones energy calculations of peri-
odic fluids (Section 3). We then highlight the proof com-
ponents (especially definitions and theorems) for the
formal implementation in Lean (Section 4). Section 5
describes how we implement these energy calculations
in Lean, which requires novel approaches using func-
tional programming, type polymorphism, and monads.
Section 6 compares our calculations with the results from
the NIST SRSW benchmarks [37].

2. Methods

We implemented this using Lean version 4.16.0-rc2,
Mathlib 4 at commit ela3d4c, and Visual Studio Code
version 1.96. The source code is available in LeanL]
Repository.

3. Informal description of the molecular
simulation system

The Lennard-Jones system is modelled as a collection of
N particles confined within a cubic simulation box of
side length L. The position of each particle is represented
as a vector in a three-dimensional space, r; = (x;, yi, zi),
where i = 1,2,...,N. The interaction between particles
is governed by the Lennard-Jones potential:

p 12 o 6
VH“‘J‘”‘*“?[(@) ‘(a)]

(1)
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(a) Periodic boundary conditions.

(b) Minimum image convention.

Figure 2. (a) Periodic boundary conditions: Particles outside the central cubic simulation box are wrapped back into it. Arrows represent
the wrapping process along the directions. (b) Minimum image convention: Particles interact with the nearest periodic image, ensuring
the shortest distanceis used in calculations. The Euclidean distance (blue) is not used; the minimum image distance (black) is used instead,
which is equivalent to the minimum image distance between wrapped particles.

where r;; is the distance between particles i and j, ¢
represents the depth of the potential well, and ¢ is the
characteristic length scale.

Periodic boundary conditions (PBCs) are applied to
simulate an infinite system as shown in the equation for
particle coordinates in the x, y, and z axes, respectively
(Figure 2).

xi

Xi_wrapped = Xi — L - round (f) (2)
Ji

yi_wrapped =Yi— L - round (I) (3)
Zi

Zi_wrapped =ZzZj— L - round (I) (4)

Because the L] particles are in a system with PBCs, the
distance between two particles is not the Euclidean dis-
tance, but the minimum image distance, the shortest
pairwise distance considering the periodicity of the box
as given in the equation below.

(Ax — L - round ( ))
L
2
+ (Ay — L - round (AT)) (5)
2
+ (Az — L - round (A—))
\ L

rij =

To improve computational efficiency, a cut-off radius
rc is introduced. Interactions are considered only for par-
ticle pairs that satisfy r;; < ¢, with contributions beyond
this radius set to zero. This truncation neglects a relatively
minor contribution to the potential energy, depending on
the cut-off radius r, as shown in Figure 3.

V(r) = [VL](T’)’ r<re ©)

0, r>r.

The Lennard Jones potential function is defined in part:
When r < r, the potential is calculated as 46[(%)12 -
(2)®], which captures both short-range repulsion and
long-range attraction. For r > r,, the potential is set to
zero, reflecting the computational practice of truncat-
ing interactions beyond the cut-off to save resources. In
addition, the inclusion of a cut-off distance makes the
function practical for large-scale molecular systems.

The total internal energy Up.ir is calculated by sum-
ming the energies of the pairs of particles interacting.
This is given by the following equation, where V(r;) is
the simulated pair potential:

N N
Upair = Z Z V(rij)a

i=1 j=i+1

where r;; < 7. (7)

The neglected part of the Lennard-Jones potential can be
approximately included by incorporating a ‘Long-Range
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Figure 3. The Lennard-Jones potential, truncated at the cut-off.

Correction’ (LRC), also known as ‘tail corrections’. This
incorporates the ensemble-averaged energy contribution
of the particles beyond the cut-off radius, in a manner
that only depends on the density of the system and does
not require pairwise distance calculations [25]. The LRC
is given by:

1 0
Urrc = 547rp/ r2V(r) dr (8)
Tc

where p is the density of the system, r, is the cut-off
radius, and V(r) is the pairwise energy function.
When V(r) = 46((%)12 — (%)6), this integrates to:

1 [e.¢]
Urrc = 547Tﬂ / Vi (r)dr 9)
Tc
1 00 12 6
= —47rp/ r*4¢ ((Z) — (z) )dr (10)
2 re r r
8 12 6
el 7[;;/) (:fz_?; — EZ__:) ( l l)
T2 9ry 3

4. Formally defining the mathematics

The previous section was an informal description of these
concepts; now, we turn to a formal description, expressed
as Lean code. Lean provides a structured framework
to rigorously define the components of our system and
prove their properties. Figure 4 illustrates our code and
the means by which it is verified. In this section and the
next, we describe the components of the system. We start
by illustrating Lean’s capabilities as a theorem prover.

4.1. Introduction to Lean syntax

Here are a few examples to illustrate the syntax of Lean
4. Lean’s basic objects include types, tactics, definitions,
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and theorems; we do not introduce any custom types
or tactics in this work, so we will focus on defini-
tions and theorems. A definition has the following basic
structure!:

.
type_of_object := the_def_of_the_object |
J

def name_of_object (pl : parameteril) ...

A theorem (or equivalently, a lemma) has the follow-
ing basic structure:

theorem name_of_theorem (pl : parameteri) ... (al : assumption1) ... : |
thing_to_be_proved := by

proof |

Lean’s rich type system enables theorems to be stated
and proved; while the user writes code, Lean effectively
checks the types of the objects in the code for consis-
tency. Type-checking a theorem object amounts to val-
idating whether it is true. As the user writes the steps
in a theorem’s proof, Lean provides a concise overview
of the current proof goal, as well as the current state
of the assumptions and parameters. This information
is presented in the ‘Lean Infoview’ in VS Code, in
what is known as a tactic state, which is organised as
follows:

pl : parameterl

al : assumptionl
I current_state_of_goal

To learn more about Lean, we highly recommend the
textbooks ‘Mechanics of Proof’ by Heather Macbeth [50]
and ‘Functional Programming in Lean’ by David Chris-
tiansen [46].

4.2. Lennard-Jones potential

We can write the Lennard-Jones potential energy func-
tion in multiple ways. In every case, we aim to for-
mally define Equation (6), using a function that takes
four parameters (¢, o, r, and ) and returns the energy
between a pair of particles.

The first version of this is 1j. In this version,
all parameters are type R, for the Real numbers.
Lean requires this definition to be prefaced with
the noncomputable keyword. Lean tries to gen-
erate executable bytecode for its functions, but this
is not possible, in general for the Real numbers.
noncomputable signals to Lean that this definition is
only for Lean to reason about in proofs. We intend to
execute other versions of this function - see functions
1j_Float and 1j_p for computable L] functions in
Section 5.
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Figure 4. Workflow of the Lennard-Jones energy calculation using LeanLJ. The process involves recursive programming, formal proofs,

and comparison to NIST benchmarks.

noncomputable def 1j (r r.c € 6 : R) : R :=
if r < r_c then
4*xex ((6/r)"12-(c /1) " 6)
else
0

While 1 j may be a natural way to write Equation (6),
alternative formulations are typically used for efficient
molecular simulations. For instance, 3 can be com-
puted first, which is then squared to obtain r—°, which
can be squared again to obtain r~!2. Our function
1j_Real reflects this idea, using intermediate variables
like r6 and r12. Because 1 j_Real is also a function of
Real numbers, it is also noncomputable.

Inoncompucable def 1j Real (rrceoc :R):R:=
\ if r < r_c then
| letr3:=(o /1) " (3 :

let r6 := r3 * r3

let r12 := 16 * 16

4 * g * (r12 - r6)

else
0

Nat)

Lean allows us to formally prove the equivalence of
these two forms, as shown in the theorem 1 j_eq;, allow-
ing us to use either representations confidently. This
capability enables not only correctness, but also flexibility
in implementing the most efficient forms for simula-
tion. Keep in mind that we do not address floating-point
or round-off errors; this guarantee holds only for ide-
alised functions over Real numbers, which have infinite
precision. If a more-efficient version of a function is
mathematically equivalent (over Reals) to a base case,
but leads to more round-off errors, that would not be
detected in our formulation. A more efficient version
that is not mathematically equivalent (e.g. it invokes an

approximation) would be shown to be distinct by this
approach.

theorem 1j_eq (r r_c € 0 : R)
unfold 1j_Real

:1jReal r T c€ G =1jrrcéo :=by
\
unfold 1j ‘
\
|

simp
ring_nf

The theorem 17j_eq formally proves that 1j_Real
1j r r_c &o. This illustrates the
syntax of Lean functions: unlike Python, which uses
parentheses to denote function application (e.g. 1j_
Real (r, r_c, epsilon, sigma)), Lean uses
simple whitespace. In the expression 1 j_Real r r_c
€0, each argument is applied to the function from left
to right, separated by spaces. Thus, 1j_Real r r_c
€0 represents ‘apply the function 1 j_Real to these four
arguments’. This compact syntax is helpful in mathemati-
cal reasoning, where function application is so pervasive.

We can also prove various mathematical properties of
our L] function. Theorem cutoff_behaviour states
that for any r > r,, the value of the Lennard-Jones poten-
tial is zero. (The way to read this theorem, is ‘for Real
numbers €, o, , and 7., assuming r > r, this function
evaluates to zero’). This reflects the practice of truncating
the potential beyond the cut-off distance.

r r.céeo =

R) (b :

theorem cutoff_behaviour (¢ ¢ r r_c : |
1j_Real € 6 r r_c = 0 := by

r>rc)

unfold 1j_Real
simp [if_neg (not_le_of_gt h)]

Theorem 1jp_eq_le establishes that,in0 < r < r,
the Lennard-Jones potential is 46[(%)12 — (”7)6]. Lean



can use logical operators like V (for all) for defining
properties of functions.

theorem ljp_eq le {rc e o : R} : Vre{r | r >0 Ar < r.cl,
ljReal rrcec=4*¢x ((6/1)12 - (6 / 1)°6) := by
intro r hr
have h_r_le_rc : r < r_c := hr.2
unfold 1j_Real

rw [if_pos h_r_le_rc]

ring

We also prove the continuity of the function in
this range, in Theorem 1 jp_continuous_closed_
domain (for brevity, we just state the theorem here; the
full proof is on GitHub). Continuity is essential in molec-
ular dynamics simulations because forces are evaluated
on the basis of energy gradients, and discontinuities can
introduce artificial forces, destabilising numerical inte-
gration [7]. Importantly, we do not, indeed we cannot,
prove that this function is continuous for the whole
domain of 7; the L] function diverges at r = 0 and under-
goes a step change at r = r.. Researchers have imple-
mented alternative truncation methods for the L] func-
tion, such as the truncated and shifted L] function or the
linear force shift function, which would be continuous
for all 0 <7 [51]. These properties could be formalised
in Lean, but in this work, we have focussed on the simple
LJ function.

theorem 1j_p_continuous_closed_domain (r_c € ¢ : R) :
ContinuousOn (fun r => if r < r_c then 4 * € *x (((6 / ) =~ 6) ~ 2 -
else 0) {r | 0 <r Ar < r_c} :=by

(6 /x)~6)

4.3. Periodic boundaries

We follow the formulation in Allen and Tildesley [7] in
defining functions for wrapping molecules according to
periodic boundary conditions (PBCs) and calculating the
minimum image distance. The periodic boundary func-
tion wraps a position from anywhere in space into the
bounds of the simulation box. This function pbc takes in
a one-dimensional position and box length and outputs
a new position (all have type R).

(R = |
pos - boxLength * round (pos / boxLength) |

noncomputable def pbc_Real (pos boxLength : R)

We formally proved that the wrapped displacement
produced by the periodic boundary condition func-
tion lies within the interval [—L/2,L/2] for any Real
coordinate p and positive box length L. This ensures
that particles always interact with the nearest periodic
image, which is a key assumption in molecular dynam-
ics simulations. The proof was constructed in Lean by
expressing the wrapped position as L - §, where 6 = % —
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round(%), and rigorously showing that |d] < %, hence

|pbc_Real(p, L)| < %

theorem abs_pbc_le (p L : R) (hL : 0 < L) :
dsimp [pbc_Reall
let & := (p / L) - round (p / L)
have h_eq : p - L * round (p /L) =L * § := by
rw [mul_sub]
field_simp [hL.ne’]
rw [h_eq, abs_mul, abs_of_pos hL]
have hé : |8 < 1 / 2 := abs_diff_round_le_half (p / L)
trans L * (1 / 2)
- exact mul_le_mul_of_nonneg_left h§ hL.le

Ipbc_Real p LI < L/ 2 :=by

- field_simp

4.4. Minimum image distance

In defining the minimum image distance, we found it
more convenient to first define the squared minimum
image distance, and then take the square root of that
to obtain the minimum image distance. The box length
boxLength and positions posA and posB are vectors
in RN (with N = 3) where each component corresponds
to a coordinate in the respective dimension. This is spec-
ified using a vector type Fin 3 — R.2 The function
iterates over each of the three dimension and computes
a displacement, which is adjusted using the periodic
boundary function pbc_Real. The adjusted displace-
ments are squared and summed over all dimensions. In
our squaredminImageDistance_Real function,
the decide tactic is employed in each invocation of the
vectors posB and posA, to prove to Lean that elements 0,
1, and 2 are in scope.

noncomputable def squaredminImageDistance Real (posA posB : Fin 3 — R) (boxLength : i
Fin3 - R) : R := |
let dx := pbc_Real (posB (0: Fin 3) - posA (0: Fin 3)) (boxLength (0: Fin 3)) |
let dy := pbc_Real (posB (1: Fin 3) - posA (1: Fin 3)) (boxLength (1: Fin 3)) |
let dz := pbc_Real (posB (2: Fin 3) - posA (2: Fin 3)) (boxLength (2: Fin 3)) |
dx~2 + dy~2 + dz~2 |

We can prove a neat property of how the peri-
odic boundaries interact with the minimum image dis-
tance - that the minimum image distance between
arbitrary points in space is equivalent to the mini-
mum image distance between those points, after being
wrapped into the simulation box. This is stated in
theorem squaredminImageDistance_theorem,
which requires an inline invoking a 4 function to iterate
over the box dimensions (for brevity, the proof steps are
omitted here, but available on GitHub). This only holds
for non-zero box lengths.

theorem squaredminImageDistance_theorem (boxLength posA posB : Fin 3 — R)
(hL : V i, boxLength i # 0) squaredminImageDistance_Real boxLength posA posB =
squaredminImageDistance_Real boxLength (1 i => pbc_Real (posA i) (boxLength i))
(A i => pbc_Real (posB i) (box_length i)) := by

Finally, the function minImageDistance_Real
calls the squaredminImageDistance function,


https://github.com/ATOMSLab/LeanLJ
https://github.com/ATOMSLab/LeanLJ/blob/f4513e07e14e7290feccf856546fe4e5a7b7ca97/LeanLJ/MinImageDistance_PeriodicBC.lean
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and takes the square root to obtain the minimum image
distance.

noncomputable def minImageDistance Real (posA posB boxLength : Fin 3 — R) : R :=

(squaredminImageDistance_Real posA posB boxLength).sqrt

We can also prove that computed distances between
particles are guaranteed to be non-negative in all appli-
cations of the minimum image convention; this can be
useful when non-negativity is invoked in proofs about
energy calculations.

theorem minImageDistance_real_nonneg ( posA posB boxLength : Fin 3 — R) :
0 < minImageDistance_Real posA posB boxLength := by
unfold minlmageDistance_real

apply Real.sqrt_nonneg

We also proved that the minimum image distance
between a particle and itself is always zero (theorem
minImageDistance_self).

theorem minImageDistance_real_self (pos boxLength : Fin 3 — R) :

minImageDistance_Real pos pos boxLength = 0 := by

unfold minImageDistance_Real squaredminImageDistance_Real

have hO : pbc_Real (pos (0: Fin 3) - pos (0: Fin 3)) (boxLength (0: Fin 3)) = 0 := by
simp [pbc_Real, sub_self, zero_div, round_zero, mul_zero, sub_zero]

have hl : pbc_Real (pos (1: Fin 3) - pos (1: Fin 3)) (boxLength (1: Fin 3)) = 0 := by
simp [pbc_Real, sub_self, zero_div, round_zero, mul_zero, sub_zero]

have h2 : pbc_Real (pos (2: Fin 3) - pos (2: Fin 3)) (boxLength (2: Fin 3)) = 0 := by
simp [pbc_Real, sub_self, zero_div, round_zero, mul_zero, sub_zero]

rw [hO, hi, h2]

simp

While the above formulations of pbc_Real and
minImageDistance_Real lead to valid computa-
tions and proofs, we are somewhat dissatisfied with the
semantics. The pbc_Real function operates on par-
ticle positions (i.e. x;), wrapping them inside the box
from outside. When this function is applied in the
minImageDistance function, it is being applied to
a difference between particle positions (i.e. xj — x;). Lean
does not complain, because in both cases, these are just
real numbers, and everything checks out, but a displace-
ment is nonetheless not the same thing as a position.
There may be a way to make this even more rigorous, by
defining a custom type for positions and restricting the
pbc_Real function to only operate on such a type, but
we kept our approach simpler for now.

4.5. Long-range corrections

The long-range correction, given in Equation (8), is com-
puted using the function U_LRC, which depends on p, €,
o,and rc.

noncomputable def U_LRC_Real (p € 0 rc : R) : R := |
@*mxp*e)*x ((1/9) * (6 ~ 12 / rc =~ 9) - (1/3) * (6 ~ 6 / rc ~ 3))

We can prove that this function follows from the inte-
gral definition of Urrc, Equation (11). The integral f (r
: R) in Set.Ioi rc is interpreted using measure

theory, and refers to an integral over the set Set .Ioi
rc, which is the open interval (r.,00). We state the
theorem here and omit the proof for brevity, the full proof
is available on GitHub.

theorem long_range_correction_equality (hr : 0 < rc) (p € ¢ : R) : |
(2xm#p) * [ (r : R) in Set.loi rc, 4%e * (r~2 * (((¢ / 1)"12) - ((0 / 1)"6))) =
U_LRC p € 6 rc T := by |

5. Code execution

Combining formal proofs with numerical computation
is central to this work. In this section, we elaborate on
three aspects of programming in Lean. Section 5.1 intro-
duces the function for energy summation; in Lean, this
must be recursive instead of based on traditional for
loops. Section 5.2 highlights our approach for bridg-
ing computations and proofs using polymorphic func-
tions. Section 5.3 describes Lean’s approach to input and
output.

5.1. Functional programming

Traditional molecular simulation software is imple-
mented using imperative programming languages (like
C and FORTRAN), but Lean is a functional program-
ming language (like Haskell). Imperative programs are
about ‘doing’ (following a step-by-step procedure), while
functional programs are about ‘being’ (defining what
a function is, which in Lean, ultimately enables proofs
about it). Imperative programming is susceptible to ‘side
effects’ that are avoided in functional programming,
reducing security risks and improving rigour. Functional
programming avoids mutable data types; rather than
updating (mutating) existing variables, such as assign-
ing x =x+1, when new things must be computed, new
variables are assigned. Lean 4 does support some imper-
ative design patterns, but to get guarantees that come
from proofs, writing code in a functional style is generally
preferred.

One of the most stark differences (and most relevant
for molecular simulations) between imperative and func-
tional programming is the use of for- and while-loops.
Pairwise energy calculations typically first loop over par-
ticles i from 1 to N, then over particles j from i+ 1 to N
[7, 51]. This ‘double for loop’ can be expressed in Lean as
follows:

-- Imperative style, double for loop
def total_energy_loop (positions : List (Fin 3 — Float)) (boxLength : Fin 3 — Float)
(cutoff & o : Float) : Float :=
Id.run do
let mut energy := 0.0
for i in [0 : positions.length] do
for j in [i+1 : positions.length] do
let r := minImageDistance positions[il]! positions[j]! boxLength
let e := 1j_Float r cutoff € O
energy := energy + e

return energy



https://github.com/ATOMSLab/LeanLJ

Lean sets up for loops using the keywords Id. run,
do, and for, and uses mut to denote energy as a
mutable variable. To be clear, Lean isn’t actually running
imperative code; do notation is ‘syntax sugar’ for purely
functional code, which is guaranteed to be free of side
effects. Lean 4’s ‘functional but in-place’ paradigm for
memory management makes it quite efficient compared
to other functional programming languages [52]. Lean
converts the above for loops into recursive functions. In
the following function we illustrate, making the recursion
explicit:

Recursive style
def total_energy_recursive (positions : List (Fin 3 — Float))
(boxLength : Fin 3 — Float) (cutoff € ¢ : Float) : Float :=
let numAtoms := positions.length
let rec energy : Nat — Nat — Float — Float
| 0, _, acc => acc
| i+1, 0, acc => energy i (i - 1) acc
| i+1, j+1, acc =>
let r := minImageDistance positions[i]! positions[j]! boxLength
let e := 1j_Float r cutoff € 0

energy (i+1) j (acc + e)

energy numAtoms (numAtoms - 1) 0.0

Here, a recursive function energy is defined locally,
as well an accumulation variable acc. In the central func-
tion call, energy (i+1) J (acc + 1j_Float
r r_c €o0),energy adds one L] energy contribution
to the value of acc, using particle indices i+ 1 and j to
obtain the distance r. The remaining conditions handle
increments on the edge cases.

However, we found neither of these functions to be
particularly amenable to proofs. We are particularly look-
ing for a proof that the total number of pairs in the system
is N % (N — 1)/2. To do so, we defined a helper function
that generates the pairs. Our function pairs returns a
list of pairs of atom indexes (e.g. [(0,1), (0,2), (1,2)] when
n=>3).

-- Helper function to gemerate pairs

def pairs (n : Nat) : List (Nat x Nat) :=

(List.range n).flatMap fun i =>

(List.range’ (i + 1) (n - (i + 1))).map fun j => (i, j)

We prove the length of this list is N« (N —1)/2
in pairs_length_eq in a long proof that uses
mathematical induction (full proof available on LeanL]
GitHub). In the absence of test data, such a proof could
provide confidence that the implementation is correct.
We anticipate that such proofs would be useful for val-
idating energy calculations over molecules with complex
exclusion rules (like excluding adjacent up to 1-4 inter-
actions in molecules), and higher-order interactions, like
3-body potentials.

theorem pairs_length_eq (n : Nat) : (pairs n).lemgth =n * (n - 1) / 2 := by
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Weusepairsintotal_energy_pairs,afunc-
tion that uses a simpler version of the recursive style to
accomplish this summation. This uses fo1d1, a function
from functional programming that recursively applies a
function to all elements of a list and accumulates the
result, ‘folding’ them together from the left.

-~ Total energy function using pairs |
def total_energy_pairs (positions : List (Fin 3 — Float)) |

(boxLength : Fin 3 — Float) (cutoff € ¢ : Float) : Float :=

let n := positions.length
let indexPairs := pairs n
indexPairs.foldl (fun acc (i, j) =>
let r := minTmageDistance_Float positions[i]! positions[j]! boxLength |
acc + 1j_Float r cutoff € G |
) 0.0 |

Lean automatically checks functions for termination,
which is quite important for recursive functions, lest
they get trapped in an infinite loop. These are verified
formally using tactics that operate behind-the-scenes;
only in more complicated cases, in which Lean can-
not infer termination automatically, will the user be
prompted to write a termination proof. Likewise, Lean
also ensures that array indexing is safe, preventing all
runtime errors associated with accessing out-of-bounds
indices. In developing this code, we found execution and
comparing to the NIST tests was valuable for develop-
ing the logic of the loops and the recursion, as it enabled
quick feedback. Our code also incorporates tail recursion
to facilitate efficient execution [46].

5.2. Polymorphism

In Lean, we can define functions specifically for Real
numbers (R), which allows us to prove mathemati-
cal properties, or for floating-point numbers (Float),
which enables efficient numerical computation. How-
ever, these separate implementations create a trade-off:
the Real version is non-computable, meaning it cannot
be executed in actual simulations, while the F1oat ver-
sion is not suitable for formal proofs, as floating-point
arithmetic lacks the necessary mathematical structure (in
the typical standard for floating point addition, IEEE 754,
0.1+ 0.2 # 0.3). To bridge this gap, polymorphic func-
tions are used, allowing the same definition to work for
multiple types (Figure 5). By introducing a generic type o
that can subsume both Real and Float, we ensure that
our function can operate on both Reals (R) for proofs and
floats (Float) for computations.

To illustrate, consider the function pbc (Figure 6),
which wraps a particle’s position into the simulation box
using periodic boundary conditions. Section 4 showed
pbc_Real, which operates on position and box length
with type R; pbc operates on position and box length
with generic type a. We tell Lean more about what a


https://github.com/ATOMSLab/LeanLJ/blob/main/LeanLJ/Pairs_Proof.lean
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Figure 5. How polymorphic functions link proofs (over idealised
Real numbers) with execution (over floating point numbers). The
polymorphic function f is defined for x with generic type a; proofs
about f can be written when x is Real, and computations with f can
be executed when x is a float.

can be, using type classes and instances. Specially, pbc
is defined for any type a that ‘knows how to’ subtract,
multiply, divide, and round. These capabilities are pro-
vided through the type classes HSub, HMul, HDiv, and
HasRound. For example, the type class HSub [aaa]
requires that there exists a definition of subtraction
between two members of o that would output a third
member of a. HSub, HMul, and HD1iv are all defined in
Mathlib; for rounding, we defined a custom type class,
since Mathlib did not already define that connection.
This approach allows our definition of pbc to be used
in two very different ways: with Real numbers for for-
mal proofs, and with floating-point numbers for actual
simulations.

Prefacing each function with a long list of instances is
rather cuambersome. We can group all of these instances
together into a single type class, RealLike, named thus
because it is ‘like’ Real numbers. RealLike is ulti-
mately compatible with Floats, but it doesn’t have all
the properties of the Real numbers (after all, it cannot
use functions we did not attach to the type class). The
RealLike type class captures the essential features of
types that behave like real numbers, making it easier to
write numeric code that works across different types such
asFloat or Int. It includes basic operations like addi-
tion, subtraction, multiplication, division, negation, and
exponentiation with natural numbers that appear in our
equations (1, 3, 9, etc.). It also provides comparisons ( <,
<) that return Boo1l, along with constants like zero and
one, and ways to convert from natural and integer lit-
erals. In addition, RealLike extends two smaller type
classes - HasSqrt for square roots (used in distance
calculations) and HasRound for rounding (used in peri-
odic boundaries) so that any type marked as RealLike
is also expected to support those operations. This setup
allows us to write clean, reusable, and type-safe numeric
functions without tying them to one specific number

type.

We note that this type class approach admits a
small possibility of error that Lean will not catch. The
RealLike type class manually links certain Real-
typed and Float-typed functions, and mistakes in Real-
Like won’t be flagged by Lean. For example, a sub-
tle error in which one rounding function rounded
0.5 down while another rounded 0.5 up would not
be detected by Lean. In fact, egregious errors link-
ing a square root and a cube root are also technically
possible, so human oversight remains necessary with
this approach. Essentially, the RealLike type class
defines which Real and Float functions are semantically
equivalent, and the human is responsible for ensuring
correct semantics. The Lean community is developing
more systematic solutions, such as the Computable-
Real project led by Alex Meiburg, which provides a
more principled, computable representation of real num-
bers that integrates cleanly with existing numeric type
classes [53].

class Reallike (@ : Type) extends HasRound a, HasSqrt o where
add : @ = a —
sub : @ - a =
ml:a = o~ a
div: o - a —» a
neg : @ — «
pow : @ — Nat — «
le : @ — o — Bool
1t : @ — o — Bool
zero : o
one : o
ofNat : Nat — «
ofInt : Int — «

For some more examples, we provide the implemen-
tations for the Lennard-Jones potential in three forms:
the polymorphic version (a), the Real number version (R),
and the floating-point version (Float).

-~ Polymorphic version: Works for both R and Float
def 1j_p {a : Type} [Reallike a] (rrc &€ G : @) : o :=
if r < r_c then
let r3 := (o / 1) ~ (3 : Nat)
let r6 := r3 * r3
let r12 := r6 * 16
4 % £ * (r12 - 16)
else
0

-~ Real number version: Allows formal proofs but cannot compute
noncomputable def 1j Real (rrce o : R) : R :=
if r < r_c then
let r3 := (6 / r) =~ (3 : Nat)
let r6 := r3 * r3
let r12 := 16 * r6
4 % & * (r12 - 16)
else
0

-- Floating-point version: Can compute but lacks proof capabilities
def 1j_Float (r r_c € 0 : Float) : Float :=
if r < r_c then
let r3 := (6 / r) =~ (3 : Nat)
let r6 := r3 * r3
let r12 := 6 * 16
4 x € * (r12 - r6)
else

0




def pbc (position boxLength : a)
[HSub o o o] [HMul o a @] [HDiv o o ol [HasRound al : a :=
position - boxLength * (HasRound.pround (position / boxLength))

Typeclasses Instances

Subtract(R,R)

HSub: type a “has subtraction Subtract(Float,Float)

Multiply(R,R)

HMul: type a “has multiplication” < Multiply(Float,Float)

« ” Divide(R,R
HDiv: type a “has division < DMdeiFLoa)t Float)

N Round(R,R)
HasRound: type a “has round < Round(Float,Float)

Figure 6. Explanation of the polymorphic pbc function. The
function is defined over a generic type a, and the required oper-
ations — subtraction, multiplication, division, and rounding -
are expressed through type classes: HSub, HMul, HDiv, and
HasRound. Each type class specifies that the type a must sup-
port a given operation. For example, HSubaaa means a must
support subtraction with two a inputs returning an a result. Con-
crete instances, such as Float and R, implement these type
classes to enable polymorphic behaviour. This allows pbc to work
with different numeric types, as long as they satisfy the required
operations.

Ultimately, we use RealLike to define polymor-
phic versions of all executable functions in the overall
execution flow (Figure 4) and connect them to their
Real counterparts. The polymorphic version (with type
RealLike) of each function is that which is ultimately
executed; the Real version or the polymorphic version is
used in the proofs.

5.3. Input and output in Lean

Most of Lean is developed in terms of pure functions,
whose behaviour can be guaranteed because the argu-
ment types limit the domain of the function inputs. By
chaining pure functions with pure functions through-
and-through, Lean guarantees there are no side effects.
But input/output (IO) operations cannot have the same
guarantees. For instance, if one writes a molecular con-
figuration file to disk, then reads it back in, one cannot
guarantee that some other process modified it in the
meantime.

But to be a useful programming language, Lean must
nonetheless have IO. Lean separates this cleanly from its
pure functions and math libraries, implementing it in the
I0 monad. This essentially serves as a bridge between the
messy, ‘outside’ world and the safe, pure functions inside
Lean (Figure 7).

Monads are used to handle many kinds of compu-
tation patterns in a clean and consistent way, such as
optional values, errors, and non-determinism. For exam-
ple, the Option monad handles missing values, the
Except monad deals with errors without crashing, and
the List monad allows multiple possible results from
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“Outside world” “Pure mathematics”

10 Monad

-

Figure 7. The 10 Monad as a bridge that links the verified, pure
functions in Lean with the messy real world, where data and
simulation inputs reside. The CSV parser uses the 10 Monad to

read the particle coordinates from 1j30.csv into the Lean object
positions.

a single computation. They are central in functional
programming, but are encountered less often in impera-
tive languages; the interested reader can learn more here
[46].

To import the configuration files from the NIST SRSW,
we first saved them as comma-separated values (CSV)
files. We adapted the CSV reader and used it to parse each
configuration. In addition, users are asked to manually
enter simulation parameters such as the cut-off radius,
o, ¢, and the length of the box through the terminal.
These user inputs and file reads are examples of interac-
tion with the ‘outside world’, and are handled explicitly
in Lean using the IO monad. This makes it clear which
parts of the program remain exposed to sources of error -
our setup does not provide guarantees against sources of
error on the ‘outside’ of IO; if an incorrect value for o were
input, Lean would not catch it. This would be a form of
semantic error (Table 1) that our current implementation
does not avoid.

Proofs in Lean only provide guarantees about pure
functions; errors in the I/O layer cannot be validated in
this manner. This is why we advocate for both proofs and
tests (Figure 1). For instance, while developing this appli-
cation, our first approach for reading the configuration
failed to read all atoms, leading to incorrect energy cal-
culations. Our proofs do not catch bugs like these, but
the tests do.

6. Results

To evaluate our implementation, we compare the pair-
wise interaction energy (Upair) and long-range correction
(LRC) values computed using our Lean code with the
NIST Standard Reference Simulation Website (SRSW)
benchmark values [37] for L] particles in a cubic box
(Table 2). The results show exact agreement for all four
systems, within the number of digits provided by NIST.
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Table 2. Comparison of LRC and Up,ir energy calculations from NIST SRSW [37] and LeanLJ for various
particle counts. Energies are reported in scientific notation (reduced units), with one more digit than NIST.

Particles Upair (Lean) Upair (NIST) LRC (Lean) LRC (NIST)

30 —1.67903E+01 —1.6790E+01 —5.45166E—01 —5.4517E-01
200 —6.90004E+02 —6.9000E+4-02 —2.42296E+-01 —2.42296E+-01
400 —1.14666E+03 —1.1467E+4-03 —4.96222E+4-01 —4.9622E+01
800 —4.35154E+03 —4.3515E4-03 —1.98488E+-02 —1.9849E+02

7. Discussion and outlook

In this study, we developed pairwise energy calculations
in Lean and compared our results with the values pro-
vided by the NIST SRSW benchmark. Our calculations
agree to machine precision with the NIST reference val-
ues. To be clear, our confidence in our system does
not stem from its agreement with the NIST benchmark,
rather from the theorems we have proved in Lean that
certify that the functions in LeanL] have those specified
mathematical properties. For instance, the pbc function
guarantees that all wrapped particles lie in the interval
[—L/2,L/2], and the derivation of the function comput-
ing long-range corrections is validated mathematically.
We assert that LeanL] is a more reliable benchmark than
the NIST SRSW, at least for the components of the bench-
mark we have addressed. LeanL] could be validated even
further by adding to the list of proved theorems about
current functions.

We consider it helpful to reflect on the remaining
sources of uncertainty in our code - considering what
we have verified, what could still be wrong? First, we
are trusting in the axioms of mathematics, as expressed
in Lean’s core; errors here might compromise Mathlib,
on which we depend. Second, our approach to poly-
morphism exposes us to mistakes in our RealLike
type class, as we described in Section 5.2; Lean does not
check to ensure that RealLike links the correct Float-
and Real-type functions. Third, when we developed
both polymorphic and floating-point versions of the
same function for illustration purposes; we sometimes
mistakenly called the floating-point version in execution
instead of the polymorphic version. In this case, proofs
for that function are not technically connected to the exe-
cution - since Lean does not require our polymorphic
code design, it does not flag such mistakes (these could be
eliminated by not defining Float and RealLike versions of
the same functions). Fourth, we are still exposed to errors
in input/output (Section 5.3), and in defining system-
specific parameters, such as the force field parameters;
these are mitigated by the testing, but do not prevent
a user from inputting incorrect parameters for calcula-
tions outside the scope of the NIST benchmarks. A fifth

source would be vulnerabilities in the broader operat-
ing system in which the code is executed. Nonetheless,
traditional molecular simulation have far more possibil-
ities for errors, such that many of these concerns are
not considered in typical conversations about software
correctness.

More broadly, this work demonstrates how Lean can
provide a new paradigm for computational molecular
simulations, where the results and the entire computa-
tional process are provably correct. Logical steps to build
on this framework include implementing support for tri-
clinic simulation boxes, Ewald summation for Coulomb
interactions, neighbour lists to improve computational
efficiency, and of course, integrating Newtons equations
of motion to evolve particle trajectories. Some of these
are matters of implementation (triclinic cells), but others
will involve grappling yet-unresolved questions of how to
handle various approximations in a formal environment,
such as how to precisely describe the conditions under
which neighbour lists can be trusted.

Nonetheless, we believe that Lean can be used (in
principle) to implement molecular simulation software
with all the features of the established packages used in
daily practice. The user interface would not need to be
more complex; the proofs and theorems would all be
handled in the back-end. Furthermore, this could be inte-
grated with software frameworks like MoSDeF [33, 54],
that generate input files for multiple simulation engines.
This would help address reproducibility and rigour at
the ‘outside world” layer (Figure 7) in which the force
field parameters, molecular specifications, and configu-
ration are defined. This would also enable rigorous eval-
uation of traditional software using Lean software as a
benchmark; MoSDeF could create inputs for both veri-
fied Lean software as well as for LAMMPS, and devia-
tions between the respective outputs may signal a bug in
LAMMPS.

In our previous work, we showed Lean’s broader util-
ity for formalising derivations in science as math proofs
[47], digitising key results in absorption theory, thermo-
dynamics, and kinematics. Joseph Tooby-Smith is also
developing derivations in the high-energy physics field
[48, 55]. These early works showcase Lean’s rigour and



versatility for building a library (or libraries) of formally-
verified results in diverse areas of science, facilitating
rigorous verification of scientific ideas in different dis-
ciplines. In the long term, we envision Lean being used
to formalise not just interaction potentials or particle
dynamics, but the very foundations of statistical mechan-
ics itself. The mathematics of ensemble theory, such as
definitions of the microcanonical (NVE) and canoni-
cal (NVT) ensembles and proofs about their proper-
ties, could be stated precisely, and then directly linked
to formally verified simulation code. For instance, we
imagine proving that a molecular dynamics simulation
routine satisfies the conservation laws of the NVE ensem-
ble, in the limit of infinitesimal time steps, and ver-
ifying the detailed balance condition of Monte Carlo
moves.

LeanL] demonstrates how executable scientific com-
puting software can be tied to such proofs, using poly-
morphic functions. We believe this approach is quite gen-
eral for reasoning about idealised Real-valued functions
in scientific theories, while linking these to floating-point
executions in scientific computing software. Certigrad’s
[41] approach is also worth considering; this verifies the
high-level mathematics in Lean, and then links high-
level functions to unverified, but efficient, linear algebra
libraries written in C. Compared to our approach, Cer-
tigrad’s ‘bridge” between verified math and executable
math consequently happens at a higher level; our poly-
morphic functions build this bridge at the level of indi-
vidual math operators (e.g. addition, division) and con-
stants (e.g. 7).

Scientific computing benchmarks are typically based
on human oversight and software best practices [36]; for-
mal Lean verification offers an even more rigorous alter-
native, allowing rigorous mathematical proofs that the
implemented software is correct. This shift from empir-
ical validation to formal proof introduces a new level
of confidence in molecular simulations, setting the stage
for more reliable and mathematically sound scientific
computing.

8. Conclusion

This work demonstrates how formal methods can com-
plement molecular simulations by providing proven
guarantees about the properties of the molecular simu-
lation system. While still in its early stages, this approach
opens a path toward mathematically-verified simula-
tions.

Notes

1. This overview is inspired by the presentation in [48].
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2. Lean can handle particularly rich mathematics through its
use of dependent types — types that depend on a value.
Vector isan example of this — it is a subtype of List that
depends on a value, the length of the list, which in our case,
is 3. This is one way in which Lean avoids runtime errors;
before the code compiles, Lean can ensure that a function
taking a vector of length N will always receive a vector of
length N.
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