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Combining data and theory for derivable
scientific discovery with AI-Descartes

Cristina Cornelio 1,2 , Sanjeeb Dash1, Vernon Austel1, Tyler R. Josephson 3,4,
Joao Goncalves1, Kenneth L. Clarkson1, Nimrod Megiddo1, Bachir El Khadir1 &
Lior Horesh 1,5

Scientists aim to discover meaningful formulae that accurately describe
experimental data. Mathematical models of natural phenomena can be
manually created from domain knowledge and fitted to data, or, in contrast,
created automatically from large datasets with machine-learning algorithms.
The problem of incorporating prior knowledge expressed as constraints on
the functional form of a learned model has been studied before, while finding
models that are consistent with prior knowledge expressed via general logical
axioms is an open problem. We develop a method to enable principled deri-
vations of models of natural phenomena from axiomatic knowledge and
experimental data by combining logical reasoning with symbolic regression.
We demonstrate these concepts for Kepler’s third law of planetary motion,
Einstein’s relativistic time-dilation law, and Langmuir’s theory of adsorption.
We show we can discover governing laws from few data points when logical
reasoning is used to distinguish between candidate formulae having similar
error on the data.

Artificial neural networks (NN) and statistical regression are commonly
used to automate the discovery of patterns and relations in data. NNs
return “black-box” models, where the underlying functions are typi-
cally used for prediction only. In standard regression, the functional
form is determined in advance, so model discovery amounts to para-
meter fitting. In symbolic regression (SR)1, 2, the functional form is not
determined in advance, but is instead composed from operators in a
given list (e.g., + , − , × , and ÷) and calculated from the data. SRmodels
are typically more “interpretable” than NN models, and require less
data. Thus, for discovering laws of nature in symbolic form from
experimental data, SR may work better than NNs or fixed-form
regression3; integration of NNs with SR has been a topic of recent
research in neuro-symbolic AI4–6. Amajor challenge in SR is to identify,
out of many models that fit the data, those that are scientifically
meaningful. Schmidt and Lipson3 identify meaningful functions as
those that balance accuracy and complexity. However many such

expressions exist for a given dataset, and not all are consistent with the
known background theory.

Another approach would be to start from the known background
theory, but there are no existing practical reasoning tools that gen-
erate theorems consistent with experimental data from a set of known
axioms. Automated Theorem Provers (ATPs), the most widely-used
reasoning tools, instead solve the task of proving a conjecture for a
given logical theory. Computational complexity is a major challenge
for ATPs; for certain types of logic, proving a conjecture is undecid-
able. Moreover, deriving models from a logical theory using formal
reasoning tools is especially difficult when arithmetic and calculus
operators are involved (e.g., see the work of Grigoryev et al.7 for the
case of inequalities). Machine-learning techniques have been used to
improve the performance of ATPs, for example, by using reinforce-
ment learning to guide the search process8. This research area has
received much attention recently9–11.

Received: 28 October 2021

Accepted: 8 March 2023

Check for updates

1IBMResearch—Mathematics and Theoretical Computer Science, NewYork, NY, USA. 2SamsungAI—Machine Learning andData Intelligence, Cambridge, UK.
3Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, MD, USA. 4Department of Chemistry and
Chemical Theory Center, University of Minnesota, Minneapolis, MN, USA. 5Columbia University, Computer Science, New York, NY, USA.

e-mail: c.cornelio@samsung.com; lhoresh@us.ibm.com

Nature Communications |         (2023) 14:1777 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5284-6487
http://orcid.org/0000-0001-5284-6487
http://orcid.org/0000-0001-5284-6487
http://orcid.org/0000-0001-5284-6487
http://orcid.org/0000-0001-5284-6487
http://orcid.org/0000-0002-0100-0227
http://orcid.org/0000-0002-0100-0227
http://orcid.org/0000-0002-0100-0227
http://orcid.org/0000-0002-0100-0227
http://orcid.org/0000-0002-0100-0227
http://orcid.org/0000-0001-6350-0238
http://orcid.org/0000-0001-6350-0238
http://orcid.org/0000-0001-6350-0238
http://orcid.org/0000-0001-6350-0238
http://orcid.org/0000-0001-6350-0238
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37236-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37236-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37236-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37236-y&domain=pdf
mailto:c.cornelio@samsung.com
mailto:lhoresh@us.ibm.com


Models that are derivable, and not merely empirically accurate,
are appealing because they are arguably correct, predictive, and
insightful. We attempt to obtain such models by combining a novel
mathematical-optimization-based SRmethodwith a reasoning system.
This yields an end-to-end discovery system, which extracts formulas
from data via SR, and then furnishes either a formal proof of deriva-
bility of the formula from a set of axioms, or a proof of inconsistency.
We present novel measures that indicate how close a formula is to a
derivable formula, when the model is provably non-derivable, and we
calculate the values of these measures using our reasoning system. In
earlier work combiningmachine learning with reasoning, Marra et al.12

use a logic-based description to constrain the output of a GAN neural
architecture for generating images. Scott et al.13 and Ashok et al.14

combine machine-learning tools and reasoning engines to search for
functional forms that satisfy prespecified constraints. They augment
the initial dataset with new points in order to improve the efficiency of
learning methods and the accuracy of the final model. Kubalik et al.15

also exploit prior knowledge to create additional data points. How-
ever, these works only consider constraints on the functional form to
be learned, and do not incorporate general background-theory axioms
(logic constraints that describe the other laws and unmeasured vari-
ables that are involved in the phenomenon).

Results
Discovery as a formal mathematical problem
Our automated scientific discovery method aims to discover an
unknown symbolicmodel y = f *(x) (bold letters indicate vectors) where
x is the vector (x1,…, xn) of independent variables, and y is the
dependent variable. The discovered model f (an approximation of f *)
should fit a collection of m data points, ((X1, Y 1),⋯ , (Xm, Ym)), be
derivable from a background theory, have low complexity and boun-
ded prediction error. More specifically, the inputs to our system are
4-tuples hB,C,D,Mi as follows.

• Background Knowledge B: a set of domain-specific axioms
expressed as logic formulae. They involve x, y, and possibly
more variables that are necessary to formulate the background
theory. In this work we focus mainly on first-order-logic
formulae with equality, inequality and basic arithmetic opera-
tors. We assume that the background theory B is complete, that
is, it contains all the axioms necessary to comprehensively
explain the phenomena under consideration, and consistent,
that is, the axioms do not contradict one another. These two
assumptions guarantee that there exists a unique derivable
function f B that logically represents the variable of interest y.
Note that although the derivable function is unique, there may
exist different functional forms that are equivalent on the
domain of interest. Considering the domain with two points
{0, 1} for a variable x, the two functional forms f (x) = x and
f (x) = x2 both define the same function.

• A Hypothesis Class C: a set of admissible symbolic models
defined by a grammar, a set of invariance constraints to avoid
redundant expressions (e.g., A + B is equivalent to B +A) and
constraints on the functional form (e.g., monotonicity).

• Data D: a set of m examples, each providing certain values for
x1,…, xn, and y.

• Modeler Preferences M: a set of numerical parameters (e.g.,
error bounds on accuracy).

Generalized notion of distance
In general, theremaynot exist a function f 2 C that fits the data exactly
and is derivable from B. This could happen because the symbolic
model generating the data might not belong to C, the sensors used to
collect the data might give noisy measurements, or the background
knowledge might be inaccurate or incomplete. To quantify the com-
patibility of a symbolic model with data and background theory, we
introduce the notion of distance between a model f and B. Roughly, it
reflects the error between the predictions of f and the predictions of a
formula f B derivable from B (thus, the distance equals zero when f is
derivable from B). Figure 1 provides a visualization of these two
notions of distance for the problem of learning Kepler’s third law of
planetary motion from solar-system data and background theory.

Integration of statistical and symbolic AI
Our system consists mainly of an SR module and a reasoning module.
The SR module returns multiple candidate symbolic models (or for-
mulae) expressing y as a function of x1,…, xn and that fit the data. For
each of these models, the system outputs the distance ε( f ) between f
andD and the distance β( f ) between f and B. We will also be referring
to ε( f ) and β( f ) as errors.

These functions are also tested to see if they satisfy the specified
constraints on the functional form (in C) and themodeler-specified level
of accuracy and complexity (inM). When the models are passed to the
reasoningmodule (alongwith the background theoryB), they are tested
for derivability. If a model is found to be derivable from B, it is returned
as the chosen model for prediction; otherwise, if the reasoning module
concludes that no candidate model is derivable, it is necessary to either
collect additional data or add constraints. In this case, the reasoning
module will return a quality assessment of the input set of candidate
hypotheses based on the distance β, removing models that do not
satisfy the modeler-specified bounds on β. The distance (or error) β is
computed between a function (or formula) f, derived from numerical
data, and the derivable function f B which is implicitly defined by the set
of axioms in B and is logically represented by the variable of interest y.
The distance between the function f B and any other formula f depends
only on the background theory and the formula f and not on any par-
ticular functional form of f B . Moreover, the reasoning module can
prove that amodel is not derivable by returning counterexample points
that satisfy B but do not fit the model.

Fig. 1 | Visualization of relevant sets and their distances. The numerical data,
background theory, and a discovered model are depicted for Kepler’s third law of
planetary motion giving the orbital period of a planet in the solar system. The data
consists ofmeasurements (m1,m2, d, p) of themass of the sunm1, the orbital period
p and mass m2 for each planet and its distance d from the sun. The background
theory amounts to Newton’s laws ofmotion, i.e., the formulae for centrifugal force,
gravitational force, and equilibrium conditions. The 4-tuples (m1,m2, d, p) are
projected into (m1 +m2, d, p). Thebluemanifold represents solutions of f B , which is
the function derivable from the background-theory axioms that represents the
variable of interest. The gray manifold represents solutions of the discovered
model f. The double arrows indicate the distances β ( f ) and ε( f ).
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Interplay between data and theory in AI-Descartes
SR is typically solved with genetic programming (GP)1–3, 16, however
methods based on mixed-integer nonlinear programming (MINLP)
have recently been proposed17–19. In this work, we develop a new
MINLP-based SR solver (described in the Supplementary Information).
The input consists of a subset of the operators
{ + ,� , × ,� , ffip , log , exp}, an upper bound on expression complexity,
and an upper bound on the number of constants used that do not
equal 1. Given a dataset, the system formulates multiple MINLP
instances to find an expression that minimizes the least-square error.
Each instance is solved approximately, subject to a time limit. Both
linear and nonlinear constraints can be imposed. In particular,
dimensional consistency is imposed when physical dimensions of
variables are available.

We use KeYmaera X20 as a reasoning tool; it is an ATP for hybrid
systems and combines different types of reasoning: deductive, real-
algebraic, and computer-algebraic reasoning. We also use
Mathematica21 for certain types of analysis of symbolic expressions.
While a formula found by any grammar-based system (such as an SR
system) is syntactically correct, it may contradict the axioms of the
theory or not be derivable from them. In some cases, a formula may
not be derivable as the theory may not have enough axioms; the for-
mula may be provable under an extended axiom set or an alternative
one (e.g., using a relativistic set of axioms rather than a
“Newtonian” one).

An overview of our system seen as a discovery cycle is shown in
Fig. 2. Our discovery cycle is inspired by Descartes who advanced the
scientific method and emphasized the role that logical deduction,
and not empirical evidence alone, plays in forming and validating
scientific discoveries. Our present approach differs from imple-
mentations of the scientific method that obtain hypotheses from
theory and then check them against data; instead we obtain
hypotheses from data and assess them against theory. A more
detailed schematic of the system is depicted in Fig. 3, where the
colored components correspond to the system we present in this
work, and the gray components refer to standard techniques for
scientific discovery that we have not yet integrated into our current
implementation.

Experimental validation
We tested the different capabilities of our system on three problems
(more details in the Methods section). First, we considered the pro-
blem of deriving Kepler’s third law of planetary motion, providing
reasoning-basedmeasures to analyze the quality and generalizablity of
the generated formulae. Extracting this law from experimental data is
challenging, especially when the masses involved are of very different
magnitudes. This is the case for the solar system, where the solarmass
is much larger than the planetarymasses. The reasoningmodule helps
in choosing between different candidate formulae and identifying the
one that generalizes well: using our data and theory integration we
were able to re-discover Kepler’s third law. We then considered Ein-
stein’s time-dilation formula. Althoughwe did not recover this formula
from data, we used the reasoning module to identify the formula that
generalizes best. Moreover, analyzing the reasoning errors with two
different sets of axioms (one with “Newtonian” assumptions and one
relativistic), wewere able to identify the theory that better explains the
phenomenon. Finally, we considered Langmuir’s adsorption equation,
whose background theory contains material-dependent coefficients.
By relating these coefficients to the ones in the SR-generated models
via existential quantification, wewere able to logically prove one of the
extracted formulae.

Discussion
We have demonstrated the value of combining logical reasoning with
symbolic regression in obtaining meaningful symbolic models of
physical phenomena, in the sense that they are consistent with back-
ground theory and generalize well in a domain that is significantly
larger than the experimental data. The synthesis of regression and
reasoning yields better models than can be obtained by SR or logical
reasoning alone.

Improvements or replacements of individual system components
and introduction of new modules such as abductive reasoning or
experimental design22 (not described in this work for the sake of
brevity) would extend the capabilities of the overall system. A deeper
integration of reasoning and regression can help synthesize models
that are both data driven and based on first principles, and lead to a
revolution in the scientific discovery process. The discovery of models

Fig. 2 | An interpretation of the scientific method as implemented by our system. The colors match the respective components of the system in Fig. 3.
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that are consistent with prior knowledge will accelerate scientific dis-
covery, and enable going beyond existing discovery paradigms.

Methods
Wenext describe indetail themethodologies used to address the three
problems studied to validate our method: Kepler’s third law of plane-
tary motion, relativistic time dilation, and Langmuir’s adsorption
equation.

Kepler’s third law of planetary motion
Kepler’s law relates the distance d between two bodies (e.g., the sun
and a planet in the solar system) and their orbital periods. It can be
expressed as

p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2d3

G m1 +m2

� �
s

, ð1Þ

wherep is the period,G is the gravitational constant, andm1 andm2 are
the two masses. It can be derived using the following axioms of the
background theory B, describing the center of mass (axiom K1), the
distance between bodies (axiom K2), the gravitational force (axiom
K3), the centrifugal force (axiomK4), the forcebalance (axiomK5), and
the period (axiom K6):

K1: Center of mass m1d1 =m2d2

K2: Distance between bodies d =d1 +d2

K3: Gravitational force Fg =
Gm1m2

d2

K4: Centrifugal force Fc =m2d2w
2

K5: Force balance Fg = Fc

K6: Period definition p= 2π
w

K7: Positivity constraints m1 > 0,m2 > 0,p>0,d1 > 0,d2 > 0:

ð2Þ

We consider three real-world datasets: planets of the solar system
(from the NASA Planetary Fact Sheet23), the solar-system planets along
with exoplanets fromTrappist-1 and theGJ 667 system (from theNASA
exoplanet archive24), and binary stars25. These datasets contain mea-
surements of pairs of masses (a sun and a planet for the first two, and
two suns for the third), the distance between them, and the orbital

period of the planet around its sun in the first two datasets or the
orbital period around the common center of mass in the third dataset.
The data we use is given in the Supplementary Information. Note that
the dataset does not contain measurements for a number of variables
in the axiom system, such as d1, d2, Fg, etc.

The goal is to recover Kepler’s third law (Eq. (1)) from the data,
that is, to obtain p as the above-stated function of d, m1 and m2.

The SR module takes as input the set of operators {+ ,� , × ,� ,√ }
and outputs a set of candidate formulas. None of the formulae obtained
via SR are derivable, though some are close approximations to derivable
formulae. We evaluate the quality of these formulae by writing a logic
program for calculating the error β of a formula with respect to a
derivable formula. We use three measures, defined below, to assess the
correctness of a data-driven formula from a reasoning viewpoint: the
pointwise reasoning error, the generalization reasoning error, and vari-
able dependence.

Pointwise reasoning error. The key idea is to compute a distance
between a formula generated from the numerical data and some
derivable formula that is implicitly defined by the axiom set. The dis-
tance is measured by the l2 or l1 norm applied to the differences
between the values of the numerically-derived formula and a derivable
formula at the points in the dataset. This definition can be extended to
other norms.

Wecompute the relative errorof numerically derived formula f (x)
applied to the m data points Xi (i = 1,…,m) with respect to f BðxÞ,
derivable from the axioms via the following expressions:

βr
2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i = 1

f ðXiÞ � f BðXiÞ
f BðXiÞ

 !2
vuut and βr

1 = max
1≤ i≤m

∣ f ðXiÞ � f BðXiÞ∣
∣ f BðXiÞ∣

( )

ð3Þ

where f BðXiÞ denotes a derivable formula for the variable of interest y
evaluated at the data point Xi.

The KeYmaera formulation of these two measures for the first
formula of Table 1 can be found in the Supplementary Information.
Absolute-error variants of the first and second expressions in Eq. (3)

Fig. 3 | System overview. Colored components correspond to our system, and
gray components indicate standard techniques for scientific discovery (human-
driven or artificial) that have not been integrated into the current system. The
colors match the respective components of the discovery cycle of Fig. 2. The

present system generates hypotheses from data using symbolic regression, which
are posed as conjectures to an automated deductive reasoning system, which
proves or disproves them based on background theory or provides reasoning-
based quality measures.
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are denoted by βa
2,β

a
1, respectively. The numerical (data) error mea-

sures εr2 and εr1 are defined by replacing f BðXiÞ by Yi in Eq. (3). Ana-
logous toβa

2 andβa
1, we alsodefine absolute-numerical-errormeasures

εa2 and εa1.
Table 1 reports in columns 5 and 6 the values of βr

2 and βr
1,

respectively. It also reports the relative numerical errors εr2 and εr1 in
columns 3 and 4, measured by the l2 and l1 norms, respectively, for
the candidate expressions given in column 2 when evaluated on the
points in the dataset.Weminimize the absolute l2 error ε

a
2 (and not the

relative error εr2), when obtaining candidate expressions via symbolic
regression.

Thepointwise reasoning errorsβ2 and β1 are not very informative
if SR yields a low-error candidate expression (measuredwith respect to
the data), and the data itself satisfies the background theory up to a
small error, which indeed is the case with the data we use; the rea-
soning errors and numerical errors are very similar.

Generalization reasoning error. Even when one can find a function
thatfits givendatapointswell, it is challenging toobtain a function that
generalizes well, that is, one which yields good results at points of the
domain not equal to the data points. Let βr

1,S be calculated for a can-
didate formula f (x) over a domain S that is not equal to the original set
of data points as follows:

βr
1,S = max

x2S
∣ f ðxÞ � f BðxÞ∣

∣ f BðxÞ∣

� �
, ð4Þ

wherewe consider the relative error and, as before, the function f BðxÞ
is not known, but is implicitly defined by the axioms in the back-
ground theory. We call this measure the relative generalization rea-
soning error. If we do not divide by f BðxÞ in the above expression, we
get the corresponding absolute version βa

1,S. For the Kepler dataset,
we let S be the smallest multi-dimensional interval (or Cartesian
product of intervals on the real line) containing all data points. In
column 7 of Table 1, we show the relative generalization reasoning
error βr

1,S on the Kepler datasets with S defined as above. If this error
is roughly the same as βr

1 the pointwise relative reasoning error for
l1 (e.g., for the solar systemdataset) then the formula extracted from
the numerical data is as accurate at points in S as it is at the original
data points.

Variable dependence. In order to check if the functional dependence
of a candidate formula on a specific variable is accurate, we compute

the generalization error over a domain S0 where the domain of this
variable is extended by an order of magnitude beyond the smallest
interval containing the values of the variable in the dataset. Thus we
can check whether there exist special conditions under which the
formula does not hold. Wemodify the endpoints of an interval by one
order of magnitude, one variable at a time. If we notice an increase in
the generalization reasoning error while modifying intervals for one
variable, we deem the candidate formula as missing a dependency on
that variable. A missing dependency might occur, for example,
because the exponent for a variable is incorrect, or that variable is not
considered at all when it should be. One can get further insight into the
type of dependency by analyzing how the error varies (e.g., linearly or
exponentially). Table 1 provides, in columns 8–10, results regarding
the candidate formulae for Kepler’s third law. For each formula, the
dependencies on m1, m2, and d are indicated by 1 or 0 (for correct or
incorrect dependency). For example, the candidate formula

p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1319d3

p
for the solar system does not depend on either mass,

and the dependency analysis suggests that the formula approximates
well the phenomenon in the solar system, but not for larger masses.

The best formula for the binary-star dataset,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d3

=ð0:9967m1 +m2Þ
q

, has no missing dependency (all ones in col-

umns 8–10), that is, it generalizes well; increasing the domain along
any variable does not increase the generalized reasoning error.

Figure 4 provides a visualizationof the twoerrors εr2 and βr
2 for the

first three functions of Table 1 (solar-system dataset) and the ground
truth f �.

Relativistic time dilation
Einstein’s theory of relativity postulates that the speed of light is
constant, and implies that two observers in relative motion to each
other will experience time differently and observe different clock fre-
quencies. The frequency f for a clock moving at speed v is related to
the frequency f 0 of a stationary clock by the formula

f � f 0
f 0

=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
� 1 , ð5Þ

where c is the speed of light. This formula was recently confirmed
experimentally by Chou et al.26 using high precision atomic clocks. We
test our system on the experimental data reported by Chou et al.26

which consists of measurements of v and associated values of

Table 1 | Error values of candidate solutions for the Kepler dataset

1 2 3 4 5 6 7 8 9 10
Dataset Candidate formula numerical error point. reas. err. gen. reas. error dependencies

p = εr2 εr1 βr
2 βr

1 βr
1,S m1 m2 d

Solar
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1319d3

p
0.0129 0.0064 0.0146 0.0052 0.0052 0 0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:1316ðd3 +dÞ
q

1.9348 1.7498 1.9385 1.7533 1.7559 0 0 0

(0.03765d3 +d2)/(2 +d) 0.3102 0.2766 0.3095 0.2758 0.2758 0 0 0

Exoplanet
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1319d3

=m1

q
0.0845 0.0819 0.0231 0.0052 0.0052 0 0 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1m
3
2=d+0:1319d3

=m1

q
0.1988 0.1636 0.1320 0.1097 >550 0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 0:7362m1Þd3

=2
q

1.2246 0.4697 1.2418 0.4686 0.4686 0 0 1

Binary stars
1=ðd2m2

1 Þ+ 1=ðdm2
2Þ �m3

1m
2
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4787d3

=m2 +d
2m2

2

q
0.0023 0.0015 0.0059 0.0050 Timeout 0 0 0

ð
ffiffiffiffiffiffi
d3

p
+m3

1m2=
ffiffiffi
d

p
Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 +m2
p 0.0032 0.0031 0.0038 0.0031 Timeout 0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d3

=ð0:9967m1 +m2Þ
q

0.0058 0.0053 0.0014 0.0008 0.0020 1 1 1

Numerical error values, pointwise reasoning error values, and generalization error values are shown. We also give an analysis of the variable dependence of candidate solutions. For simplicity of
notation, in the table we use the variables d, m1, m2 and p, while referring to the scaled counterparts. We assume that all the errors are relative.
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ð f � f 0Þ=f 0, reproduced in the Supplementary Information. We take
the axioms for derivation of the time dilation formula from thework of
Behroozi27 and Smith28. These are also listed in the Supplementary
Information and involve variables that are not present in the
experimental data.

In Table 2 we give some functions obtained by our SR module
(using {+ ,� , × ,� ,√ } as the set of input operators) along with the
numerical errors of the associated functions and generalization rea-
soning errors. The sixth column gives the set S as an interval for v for
which our reasoningmodule canverify that the absolute generalization
reasoning error of the function in the first column is at most 1. The last
column gives the interval for v for which we can verify a relative gen-
eralization reasoning error of atmost 2%. Even though the last function
has low relative error according to this metric, it can be ruled out as a
reasonable candidate if one assumes the target function should be
continuous (it has a singularity at v = 1). Thus, even though we cannot
obtain the original function, we obtain another which generalizes well,
as it yields excellent predictions for a very large range of velocities.

In this case, our system can also help rule out alternative axioms.
Consider replacing the axiom that the speedof light is a constant value c
by a “Newtonian” assumption that light behaves like other mechanical
objects: if emitted from an object with velocity v in a direction per-
pendicular to the direction of motion of the object, it has velocityffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 + c2

p
. Replacing c by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 + c2

p
(in axiom R2 in the Supplementary

Information to obtain R2’) produces a self-consistent axiom system (as
confirmedby the theoremprover), albeit one leading tono timedilation.
Our reasoningmodule concludes that none of the functions in Table 2 is
compatible with this updated axiom system: the absolute generalization
reasoning error is greater than 1 even on the dataset domain, as well as
the pointwise reasoning error. Consequently, the data is used indirectly
to discriminate between axiom systems relevant for the phenomenon
under study; SR poses only accurate formulae as conjectures.

Langmuir’s adsorption equation
The Langmuir adsorption equation (Nobel Prize in Chemistry, 1932)29

describes a chemical process in which gasmolecules contact a surface,
and relates the loading q on the surface to the pressure p of the gas:

q=
qmaxKap
1 +Kap

: ð6Þ

The constants qmax and Ka characterize themaximum loading and
the adsorption strength, respectively. A similar model for a material
with two types of adsorption sites yields:

q=
qmax,1Ka,1p
1 +Ka,1p

+
qmax,2Ka,2p
1 +Ka,2p

, ð7Þ

with parameters for maximum loading and adsorption strength on
each type of site. The parameters in Eqs. (6) and (7) fit experimental
data using linear or nonlinear regression, and depend on the material,
gas, and temperature.

We used data from Langmuir’s 1918 publication29 for methane
adsorption on mica at a temperature of 90 K, and also data from the
work of Sun et al.30 (Table 1) for isobutane adsorption on silicalite at a
temperature of 277 K. In both cases, observed values of q are given for
specific values of p; the goal is to express q as a function of p. We give
the SR module the operators { + , − , × , ÷}, and obtain the best fitting
functions with two and four constants. The code ran for 20minutes on
45 cores, and seven of these functions are displayed for each dataset.

To encode the background theory, following Langmuir’s original
theory29, we elicited the following set A of axioms:

L1: Site balance S0 = S+ Sa
L2: Adsorption rate model rads = kadspS

L3: Desorption rate model rdes = kdesSa
L4: Equilibrium assumption rads = rdes
L5: Mass balance onq q= Sa:

ð8Þ

Here, S0 is the total number of sites, of which S are unoccupied
and Sa are occupied (L1). The adsorption rate rads is proportional to the
pressure p and the number of unoccupied sites (L2). The desorption
rate rdes is proportional to the number of occupied sites (L3). At
equilibrium, rads = rdes (L4), and the total amount adsorbed, q, is the
number of occupied sites (L5) because the model assumes each site
adsorbs at most one molecule. Langmuir solved these equations to
obtain

q=
S0ðkads=kdesÞp
1 + ðkads=kdesÞp

, ð9Þ

which corresponds to Eq. (6), where qmax = S0 and Ka = kads/kdes. An
axiomatic formulation for the multi-site Langmuir expression is
described in the Supplementary Information. Additionally, constants
and variables are constrained to be positive (e.g., S0 > 0, S > 0, and
Sa > 0) or non-negative (e.g., q ≥ 0).

The logic formulation to prove is:

ðC ^AÞ ! f , ð10Þ

where C is the conjunction of the non-negativity constraints, A is a
conjunction of the axioms, the union of C and A constitutes the
background theory B, and f is the formula we wish to prove.

SR can only generate numerical expressions involving the
(dependent and independent) variables occurring in the input data,
with certain values for constants; for example, the expression f = p/
(0.709p + 0.157). The expressions built from variables and constants
from the background theory, such as Eq. (9), involve the constants (in
their symbolic form) explicitly: for example, kads and kdes appear
explicitly in Eq. (9) while SR only generates a numerical instance of the
ratio of these constants. Thus, we cannot use Formula (10) directly to
prove formulaegenerated fromSR. Instead,we replace eachnumerical
constant of the formula by a logic variable ci : for example, the formula
f = p/(0.709p +0.157) is replaced by f 0 =p=ðc1p+ c2Þ, introducing two
new variables c1 and c2. We then quantify the new variables

Fig. 4 | Depictionof symbolicmodels forKepler’s third lawofplanetarymotion
giving the orbital period of a planet in the solar system. The models produced
by our SR system are represented by points (ε, β), where ε represents distance to
data, and β represents distance to background theory. Both distances are com-
puted with an appropriate norm on the scaled data.
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existentially, and define a new set of non-negativity constraints C0. In
the example above we will have C0 = c1 > 0 ^ c2 > 0.

The final formulation to prove is:

9c1 � � � 9cnðC ^AÞ ! ð f 0 ^ C0Þ: ð11Þ

For example, f 0 = p=ðc1p+ c2Þ is proved true if the reasoner can
prove that there exist values of c1 and c2 such that f 0 satisfies the
background theory A and the constraints C. Here c1 and c2 can be
functions of constants kads, kdes, S0, and/or real numbers, but not the
variables q and p.

We also consider background knowledge in the form of a list of
desired properties of the relation between p and q, which helps trim
the set of candidate formulae. Thus, we define a collection K of con-
straints on f, whereq = f ( p), enforcingmonotonicity or certain typesof
limiting behavior (see Supplementary Information). We use
Mathematica21 to verify that a candidate function satisfies the con-
straints in K.

In Table 3, column 1 gives the data source, and column 2 gives the
“hyperparameters” used in our SR experiments: we allow either two or
four constants in the derived expressions. Furthermore, as the first
constraint C1 from K can be modeled by simply adding the data point
p = q =0, we also experiment with an “extra point”.

Column 3 displays a derived expression, while columns 4 and 5
give, respectively, the relative numerical errors εr2 and εr1. If the
expression can be derived from our background theory, then we
indicate that in column6. These results are visualized in Fig. 5. Column
7 indicates the number of constraints from K that each expression
satisfies, verified by Mathematica. Among the top two-constant
expressions, f1 fits the data better than f2, which is derivable from
the background theory, whereas f1 is not.

When we search for four-constant expressions29, we get much
smaller errors thanEq. (6) or even Eq. (7), butwedonot obtain the two-
site formula (Eq. (7)) as a candidate expression. For the dataset from
Sun et al.30, g2 has a form equivalent to Langmuir’s one-site formula,
and g5 and g7 have forms equivalent to Langmuir’s two-site formula,
with appropriate values of qmax,i and Ka,i for i = 1, 2.

System limitations and future improvements
Our results on three problems and associated data are encouraging
andprovide the foundations of a newapproach to automated scientific
discovery. However our work is only a first, although crucial, step
towards completing the missing links in automating the scientific
method.

One limitation of the reasoning component is the assumption of
correctness and completeness of the background theory. The incom-
pleteness could be partially solved by the introduction of abductive
reasoning31 (as depicted in Fig. 3). Abduction is a logic technique that
aims to find explanations of an (or a set of) observation, given a logical
theory. The explanation axioms are produced in a way that satisfy the
following: (1) the explanation axioms are consistent with the original
logical theory and (2) the observation can be deduced by the new

enhanced theory (the original logical theory combined with the
explanation axioms). In our context the logical theory corresponds to
the set of background knowledge axioms that describe a scientific
phenomenon, the observation is one of the formulas extracted from
the numerical data and the explanations are the missing axioms in the
incomplete background theory.

However the availability of background theory axioms inmachine
readable format for physics and other natural sciences is currently
limited. Acquiring axioms could potentially be automated (or partially
automated) using knowledge extraction techniques. Extraction from
technical books or articles that describe a natural science phenom-
enon can be done by, for example, deep learning methods (e.g. the
work of Pfahler and Morik32, Alexeeva et al.33, or Wang and Liu34) both
from NL plain text or semi-structured text such as LateX or HTML.
Despite the recent advancements in this research field, the quality of
the existing tools remains quite inadequate with respect to the scope
of our system.

Another limitation of our system, that heavily depends on the
tools used, is the scaling behavior. Excessive computational com-
plexity is amajor challenge for automated theoremprovers (ATPs): for
certain types of logic (including the one that we use), proving a con-
jecture is undecidable. Deriving models from a logical theory using
formal reasoning tools is even more difficult when using complex
arithmetic and calculus operators. Moreover, the run-time variance of
a theorem prover is very large: the system can at times solve some
“large” problems while having difficulties with some “smaller” pro-
blems. Recent developments in the neuro-symbolic area use deep-
learning techniques to enhance standard theorem provers (e.g., see
Crouse et al.8). We are still at the early stages of this research and there
is still a lot that can be done. We envision that the performance and
capability (in terms of speed and expressivity) of theorem provers will
improve with time. Symbolic regression tools, including the one based
on solving mixed-integer nonlinear programs (MINLP) that we devel-
oped, often take an excessive amount of time to explore the space of
possible symbolic expressions and find one that has low error and
expression complexity, especially with noisy data. In practice, the
worst-case solution time for MINLP solvers (including BARON) grows
exponentially with input data encoding size (additional details in
the Supplementary Information). However,MINLP solver performance
andgenetic programmingbased symbolic regression solvers are active
areas of research.

Our proposed system could benefit from other improvements in
individual components (especially in the functionality available). For
example, Keymaera only supports differential equations in time and
not in other variables and does not support higher order logic; BARON
cannot handle differential equations.

Beyond improving individual components, our system can be
improved by introducing techniques such as experimental design (not
described in this work but envisioned in Fig. 3). A fundamental ques-
tion in the holistic view of the discovery process is what data should be
collected to give us maximum information regarding the underlying
model. The goal of optimal experimental design (OED) is to find an

Table 2 | Candidate functions derived from time dilation data, and associated error values

Candidate Numerical Error Absolute Numerical Error Relative S s.t. Absolute S s.t. Relative
formula Gen. Reas. Error Gen. Reas. Error
f = εa2 εa1 εr2 εr1 βa

1,S � 1 βr
1,S � :02

−0.00563v2 0.3822 0.3067 1.0811 0.0018 37 ≤ v ≤ 115 37 ≤ v ≤ 108

v
1+0:00689v � v 0.3152 0.2097 1.0125 0.0069 37 ≤ v ≤49 37 ≤ v ≤ 38

�0:00537 v2
ffiffiffiffiffiffiffiffiffi
v + v2

p
ðv�1Þ

0.3027 0.2299 1.2544 0.0021 37 ≤ v ≤98 37 ≤ v ≤ 109

�0:00545 v4ffiffiffiffiffiffiffiffiffiffiffiffi
v2 + v�2

p
ðv�1Þ 0.3238 0.2531 1.1308 0.0010 37 ≤ v ≤ 126 37 ≤ v ≤ 107

The values of v are defined in m/s.
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optimal sequence of data acquisition steps such that the uncertainty
associated with the inferred parameters, or some predicted quantity
derived from them, is minimized with respect to a statistical or infor-
mation theoretic criterion. In many realistic settings, experimentation
may be restricted or costly, providing limited support for any given
hypothesis as to the underlying functional form. It is therefore critical
at times to incorporate an effective OED framework. In the context of
model discovery, a large body of work addresses the question of
experimental design for predetermined functional forms, and another
body of research addresses the selection of a model (functional form)
out of a set of candidates. A framework that can deal with both the
functional form and the continuous set of parameters that define the
model behavior is obviously desirable22; one that consistently accounts
for logical derivability or knowledge-oriented considerations35 would
be even better.

Data availability
The data used in this study are available in the AI-Descartes GitHub
repository36: https://github.com/IBM/AI-Descartes.

Code availability
The code used for this work can be found, freely available, at the AI-
Descartes GitHub repository36: https://github.com/IBM/AI-Descartes.
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