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Abstract

1,4-dioxane is an emerging water pollutant with high production volumes and a

probable human carcinogen. The incompetence of conventional treatment processes

demonstrates a need for an effective remediation strategy. Crystalline nanoporous

materials are cost-effective adsorbents due to their high capacity and selective separation

in mixtures. This study explores the potency of all-silica zeolites. These zeolites are

highly hydrophobic and can preferentially adsorb nonpolar molecules from mixtures.

We investigated six zeolite frameworks (BEA, EUO, FER, IFR, MFI, MOR) using

Monte Carlo simulations in the Gibbs ensemble. The simulations indicate high selectivity

by FER and EUO, especially at low pressures, which we attribute to pore sizes and

shapes with more affinity to 1,4-dioxane. We also demonstrate a Monte Carlo simulation

1

s126@umbc.edu
tjo@umbc.edu


workflow using gauge cells to model the adsorption of an aqueous solution of 1,4-

dioxane at 0.35 ppb concentration. We quantify 1,4-dioxane and water coadsorption,

and observe selectivities ranging from 1.1 x 105 in MOR to 8.7 x 106 in FER. We also

demonstrate that 1,4-dioxane is in the infinite dilution regime in both the aqueous and

adsorbed phases at this concentration. This simulation technique can be extended to

model other emerging water contaminants such as per- and polyfluoroalkyl substances

(PFAS), chlorates, and others, which are also found in extremely low concentrations.

1 Introduction

Crystalline porous materials like metal-organic frameworks (MOFs), covalent organic frameworks

(COFs), carbon nanotubes, polyoxometalates, and zeolites, have revolutionized mixture

adsorption separations through control of pore size1, entropy2, and binding strength3. Additionally,

their stability, tunability, and low cost make them versatile4 - for example, zeolites are

used as catalysts5, adsorbents6, and ion exchangers7 in many chemical processes and have

an increasingly rising global market of multi-billion US dollars8. Water and wastewater

remediation methods also extensively use zeolites for purification from ammonia9, heavy

metals10, radioactive11, toxic12, and organic substances13, for water softening14 and seawater

desalination15.

The basic building block of zeolites is a TO4 tetrahedron where the T-atom is usually

silicon (Si) or aluminum (Al), forming an open crystal structure with small pore size and

distribution. The tetrahedrons can form different (6-, 8- or 12 rings) units that give different

topologies with the same chemical composition16. Over 40 naturally occurring zeolite frameworks

and over 253 synthetic ones are recognized by the International Zeolite Association (IZA)

Structure Commission as of December 201817. Zeolites with a high silicon content (approaching

an infinite Si/Al ratio) can be synthesized;18,19 because this class of zeolites doesn’t have

acid sites or polar cations, they can be highly hydrophobic and are exceptionally efficient as

adsorbents in aqueous separations13,20.
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This study investigates the adsorption of 1,4-dioxane from water using all-silica zeolites

at environmental concentrations using molecular simulations. 1,4-dioxane is an emerging

contaminant and a probable human carcinogen21 that has received less regulatory attention

than other pollutants despite being frequently detected in high exceedance rates according to

the third unregulated contaminant monitoring rule (UCMR)22. It is a stable cyclic diether

with symmetrical ether connections. A negative octanol-water partitioning coefficient and

low carbon partitioning coefficient make leaching into the water from soil natural23. Recent

studies show that over 30 million Americans consume water exceeding the health-based

recommended threshold of 0.35 ppb24. To comply with the standards, several remediation

strategies, including chemical, physical, and biological processes, are being evaluated; however,

a practical solution for large-scale treatment is still in the works23. While enhanced oxidation

and bio-remediation techniques have potential, they are costly and complicated to execute in

practical settings25. As degradation technologies are still developing, considerable mitigation

efforts may well focus on treating surface and groundwater bodies to comply with the

increasingly stringent limits to drinking water supplies. While these methods might fail to

degrade water pollutants entirely, they can act as an interim that can potentially concentrate

contaminants for subsequent remedial actions needed.

Common adsorbents like synthetic resins26 and activated carbon27 have not been cost-

effective solutions for large-scale treatment of 1,4-dioxane due to their limited adsorptive

capacity. Meanwhile, in one study, titanium silicalite-1, a zeolite, has shown higher capacity

and faster adsorption kinetics due to its hydrophobicity28. Hydrophobic all-silica zeolites

with comparable pore sizes may help address this challenge, but more insight is needed

to determine its efficacy. For our investigation, we selected six frameworks (BEA, EUO,

FER, IFR, MFI, and MOR) from the International Zeolite Association database17 based on

their commercial availability29, crystallographic R-factor in high silica form30, and pore sizes

comparable to 1,4-dioxane28. The pore landscapes of the zeolites are shown in Figure 10,

and Table 4 summarizes their unit cell parameters.
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The optimal design of an adsorbent is a challenging task and requires a broad understanding

of the sorption process at the microscopic level. Molecular simulations complement and

provide invaluable access to thermodynamic phenomena occurring at the pore sites and thus

have significantly contributed to the synthesis and applications of zeolite16,31,32. Additionally,

adsorption systems with competition between complex adsorbates onto complex adsorbents

can be better understood and more clearly evaluated through computer simulations33,34. For

example, molecular dynamics has been used to study 1,4-dioxane transport and adsorption

into Ti-silicalite in the presence of organic contaminants28.

However, the traditional simulation approach for sampling such a system is not only

impractical but impossible since the concentrations of 1,4-dioxane in the environment are

typically in parts per billion ranges24. For instance, we would need a liquid simulation box

of 200 million Å3 to accommodate this low concentration. This work introduces a simulation

workflow using the gauge cell Monte Carlo (gcMC) technique to efficiently model the liquid

phase adsorption of extremely low-concentration species from mixtures. The gcMC method

enables control of density for each system component individually and has successfully

modeled the thermodynamically metastable and unstable systems that are typically inaccessible35–38.

The method has been successfully implemented to investigate the phase behavior of fluids

in confined spaces, including capillary condensation39, droplet formation37,40, and surfactant

separation41.

In a study by Luo and Farrel42, the adsorption of trichloroethylene (TCE) from water

was examined using Grand Canonical Monte Carlo (GCMC) simulations. They sampled

TCE in aqueous solution at concentrations equivalent to 1% of its saturation concentration.

This study extends to sampling water contaminants at parts-per-billion levels, which is

typical of environmental conditions. While we apply this approach using Gibbs ensemble

simulations, we note that it should also be compatible with simulations in the grand canonical

ensemble, with a few modifications. The thermodynamic reservoir fixing the chemical

potential will replace the gauge cells, and extrapolation will be performed by adjusting the
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chemical potential of the solute accordingly after establishing the relationship between µ and

concentration in infinite dilution conditions. Performing GCMC simulations at the pressure

of interest for the liquid mixtures will require iteratively adjusting simulation settings until

the target pressure is reached, as GCMC fixes µV T and measures p, unlike our approach,

which fixes NpT and measures µ.

We performed Monte Carlo simulations in the Monte Carlo for Complex Chemical Systems

- Minnesota (MCCCS-MN) software43 using classical force fields. First, we reproduced the

vapor-liquid equilibrium properties of 1,4-dioxane for validation and then simulated the vapor

and liquid phase adsorptions of 1,4-dioxane into the selected zeolite frameworks. The pure

adsorption isotherms provided insight into the effects of pore size and shape on loading

capacities. Finally, we investigated the selectivity of 1,4-dioxane for mixture adsorptions

in water at the health-based reference concentration (0.35 ppb), exploiting the gauge cell

method and constructing supercell unit volumes for the zeolite frameworks.

2 Methods

2.1 Thermodynamic extrapolation approach

The gcMC method employs multiple simulation boxes, with one primary cell for the system

of interest in chemical equilibrium with gauge cells for each component. The primary cell

is flexible and modeled as a real system with intermolecular interactions, while the gauge

cells are rigid and treated as ideal gas boxes. The addition or removal of particles from the

gauge cell instantly changes its chemical potential, and it is this variation that enables us to

measure the chemical potential of the species in the main cell under conditions of interest.

The simulations were set up isobaric–isothermal Gibbs ensemble (NpT -Gibbs)44–46 where

inter-box swaps were performed for the particles between the main cell and gauge cell of each

respective component. Volume moves were only performed on the main cell representing the

mixture solution. The Gibbs free energy of transfer, ∆G
∗0
14DX ,47,48 for 1,4-dioxane can be
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computed from the ratio of densities in the simulation boxes:

∆G
∗0
14DX = kT[ln(ρ

GC
14DX

ρmix
14DX

)
eq
] (1)

where k, T , ρGC
14DX , ρmix

14DX are Boltzmann constant, temperature, and number density of 1,4-

dioxane in gauge cell and mixture cell respectively. A detailed derivation of Eq. 1 can be

found in SI section 5.3. We used Eq. 1 to determine the free energy of transfer for the dilute

system of 1,4-dioxane. For extrapolation, we took the average ∆G
∗0
14DX of low-concentration

state points and computed the 1,4-dioxane concentration in gauge cell that would correspond

to 0.35 ppb24 in the environment. Since the concentration range is exceptionally low, we

used Henry’s Law to compute the corresponding pressure. Then, we set up NpT -Gibbs

ensemble simulations with zeolite frameworks to model adsorption from low-concentrated

liquid mixtures.

2.2 Model and algorithmic details

Transferable potentials for phase equilibria (TraPPE)49 force fields were used to model 1,4-

dioxane with TraPPE-UA50, and the zeolites were modeled using TraPPE-zeo51. Lennard-

Jones (LJ) potentials were used for short-range van der Waals interactions, and Coulomb

potentials were used for long-range electrostatic interactions with a spherical cutoff of 14 Å.

Beyond this cutoff, analytical tail corrections were applied for LJ and Ewald summation for

Coulomb interactions. However, the vapor box was less dense for lower temperature state

points, and thus, a larger cutoff (approximately 30% of box length) was used.

As with the standard TraPPE force fields, here the bond lengths were treated as fixed,

bend angles were modeled with the simple harmonic oscillator, and the dihedrals with a

cosine series (Eq. 2) of the form

utorsion(ϕ) = c0 + c1 [1 + cos(ϕ)] + c2 [1 − cos(2ϕ)] + c3 [1 + cos(3ϕ)] (2)
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where ϕ is the dihedral angle and c is constant.

The TraPPE-zeo model considers zeolites as a rigid framework with silicon and oxygen

atoms fixed on the original crystallographic positions. Their interaction potentials are

tabulated as grid points, which can be interpolated to give energy depending on the location

of adsorbent species in the simulation boxes. Additionally, TIP4P model was used for water52

in the mixture adsorption systems as it has been shown to work well with the TraPPE

force field for organic molecules51,53–57. All the model parameters used for this study are

summarized in Table 5 of Supplementary section 5.2. The adsorption simulations were

initialized with an empty zeolite box to prevent overlap issues for both unary and mixture

systems.

Simulations were performed in NVT-Gibbs ensemble for modeling the vapor-liquid equilibrium

properties, and NpT-Gibbs was used for both adsorption and gauge cell systems44–46. Monte

Carlo simulations generate a sequence of states as a Markov chain with sampling probabilities

corresponding to the ensemble’s configurational integral58,59. Intramolecular and intermolecular

energies are sampled efficiently using strategic Monte Carlo moves, which are constrained

by their alignment with the chosen ensemble and their adherence to the detailed balance

defined by the Metropolis acceptance criteria60.

Gibbs ensemble consists of two (or more) simulation boxes with a constant total number

of molecules without explicit interfaces. In such a system, the inter-box swap move is integral

to balance the chemical potentials in addition to the regular translation, rotation, and volume

moves. Configurational-bias Monte Carlo (CBMC)61–63 moves were also employed to sample

configurations within each simulation box, as well as inter-box swap moves. In regular

CBMC, a molecule is grown bead by bead, with k trial positions generated based on the

internal energy for each bead, and the external energy is computed for each trial position j

of each bead i. One of these trial positions is selected and added to the existing chain with

a probability of:
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Pi (j) =
e
−βUext

i (i)

∑k

l=1 e
−βUext

i (i)
(3)

and β = 1/kBT where kB is the Boltzmann constant and T is the temperature64.

The process repeats until the entire molecule is grown. Various approaches to CBMC

exist in the literature62,63,65–68, each with a different method of bead growth tailored to

specific conformations of molecules. 1,4-dioxane, for instance, is challenging to grow with

regular CBMC because the ring structure constrains its conformational space. The growth

of such cyclic molecules requires an additional bias to nudge the growth toward positions

that will result in ring closures; here, we use the self-adapting fixed-endpoint (SAFE)

CBMC developed by Wick and Siepmann69. The bias was introduced through guiding

probabilities obtained from a short presimulation with only the translational and rotational

degrees of freedom. The probabilities are normalized ensemble averaged bead-bead distance

distributions that adapt during the simulation of the system of interest. Thus, the swap

moves for 1,4-dioxane were performed holding the ring conformation rigid while allowing

multiple trial orientations to be explored.

2.3 Super cell construction

Each zeolite framework has a building unit that repeats to form a three-dimensional lattice

structure. For instance, the FER (type 2) framework has two repeating units in the x-

direction, four in the y-direction, and two in the z-direction, making up a minimal simulation

cell. This ensures the simulation box side lengths are at least twice the cutoff radius (28 Å)

and allows the implementation of periodic boundary conditions with the minimum image

convention. Apart from the minimal simulation cell frameworks, we constructed supercells

by multiplying a factor of 2, 4, and 8 in all three dimensions and analyzed selectivity across

cell volumes. Figure 1 shows the scheme of supercell construction for the FER framework.

For simplicity, we only show a single unit cell of FER, its minimal simulation cell, and the
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largest supercell (minimal simulation cell × 512) used as the zeolite simulation box in mixture

adsorption systems. As the interactions within the zeolite frameworks are pretabulated, we

can easily increase the zeolite simulation box size to model the supercells without incurring

additional computational costs.

A unit cell of FER
with SiO4 tetrahedrons

A minimal simulation cell 
containing 16 FER unit cells 

(repeated z-dimensions is not visible)A supercell of FER with 83 replicates 
of a minimal simulation cell

Figure 1: Scheme of supercell construction

3 Results and Discussion

3.1 Force field validation for 1,4-dioxane

Before running adsorption simulations with 1,4-dioxane, we validated the force fields against

simulation50 and experimental data70 from literature (Figures 2a and 2b). To estimate

the statistical uncertainties in the coexistence properties, 16 independent simulations were

performed for temperatures ranging from 310 K to 565 K with 80k MC cycles for equilibration

and 100k MC cycles for production. The total volume of the two simulation boxes was

adjusted so that the vapor phase contained roughly 50 molecules, which accounts for about

10% of the total system size of 500 molecules. Our findings closely resemble simulated data

in the literature and reasonably agree with experimental data. The critical temperature is

overestimated by approximately 0.7%, and the normal boiling temperature is underestimated

by 3.5%. The underestimation of normal boiling temperature is systematic in TraPPE-UA

models71 as they also tend to predict higher saturated vapor densities and pressures.
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Figure 2: Vapor-liquid coexistence curves and Clausius Clapeyron plot for 1,4-dioxane.
Experimental critical temperature (▪Tc) and data, including normal boiling temperature (⬩Tb), are
shown in black symbols and solid lines. Simulation uncertainties are smaller than symbol size.

3.2 Unary adsorption loadings for 1,4-dioxane

Single-component adsorption was studied at 300 K for 1,4-dioxane for a range of pressures,

with the upper limit for vapor phase adsorption set to 0.05 bar so as not to exceed the

saturation pressure (pvap) of 1,4-dioxane at 300 K, which is approximated from simulations

to be 0.1053 bar. Two state points beyond pvap were used to model adsorption from a

liquid phase. The fluid box was initialized as a low-density gas at low pressures (p <

pvap), or as a high-density liquid at higher pressures (p > pvap) to prevent nucleation

issues. Eight independent simulations were performed for each framework with at least

80k equilibration and 100k production cycles. Some of the frameworks required more time

to reach equilibration, especially for higher pressure state points, but no simulations exceeded

500k MC cycles. We used an automated equilibrium detection technique to determine which

portion of the simulation runs from production cycles to use for reporting results described

by Chodera72. The technique determines the optimal amount of initial data that needs to

be discarded to equilibration for molecular simulations while minimizing initial bias and

variance. The pure 1,4-dioxane adsorption isotherms for the six zeolite frameworks are
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plotted in Figure 3.
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Figure 3: Predicted unary adsorption isotherms. The y-axis represents loadings (q) for six
zeolite frameworks with pressure in the x-axis (logarithmic scale). Open symbols indicate adsorption
from a liquid phase. Simulation uncertainties are smaller than symbol size.
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Figure 4: Inset view of Figure 3. Here both
loading and pressure are plotted on a logarithmic
scale to visualize the data points clearly.

The loading capacities for 1,4-dioxane

at higher pressure are in the following

order: BEA > IFR > FER > MFI > EUO

> MOR. Frameworks with high-loading

capacities like BEA or IFR may seem to

be an optimal choice for an adsorbent

as literature studies with other adsorbent

materials have reported that capacity is a

limiting factor26–28.

However, our focus here is on modeling

the adsorption behavior in environmental
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conditions where 1,4-dioxane is found in

low concentrations. Lower pressures correspond to low chemical potentials and low

concentrations, and we observe upon closer inspection (Figure 4) that FER performs

significantly better than the others in these low-pressure regions.

At lower pressures, the adsorption process is mainly driven by affinity, which is driven by

interactions with the pores, due to pore size and shape. Simulation snapshots show that 1,4-

dioxane preferentially adsorbing into the smaller 8-membered ring of the FER framework

at low pressures, as shown in Figure 5. The 8-ring pore of FER and 1,4-dioxane form a

snug fit, which is a crucial factor for selectivity in adsorption of mixtures. An investigation

on the adsorption of 1-butanol and water across distinct pore channels demonstrated how

water coadsorption is specifically related to pore size73. Various other adsorption separation

systems, including xylene isomers in MFI74 and ethane/ethylene separations75, also show

when pore size and adsorbate molecules exhibit close conformity, the scope for coadsorption

is considerably restricted. However, as the Monte Carlo simulation trajectories are generated

stochastically and include swap moves that directly insert molecules into the pores, these

simulations cannot verify whether 1,4-dioxane molecules can diffuse through the surface to

reach the smaller 8-ring pores of FER.
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Figure 5: Loading of 1,4-dioxane at pore sites. Snapshots illustrating the loading of 1,4-
dioxane in MFI (top row) and FER (bottom row) frameworks at low and high pressures.

3.3 Mixture adsorption at environmental concentrations

We conducted a small test (NpT -Gibbs simulation with 120 1,4-dioxane and 600 water

molecules at 1 atm and 300 K) to determine if all-silica zeolites efficiently separate 1,4-

dioxane from water under environmentally relevant conditions. While the test results were

promising (we observed selective adsorption of 1,4-dioxane, with just about 14 molecules

remaining in the liquid phase), we quickly realized that our simulation conditions were

far from the parts per billion concentrations needed to model environmental conditions.

Replicating the concentration of 1,4-dioxane that is considered safe for human health, i.e.,

0.35 ppb (micrograms per liter of water), we would require approximately 100 million water

molecules for every molecule of 1,4-dioxane. Sampling with a regular NpT -Gibbs ensemble

for such a system is not only impractical but also computationally inefficient, so we developed

an approach using gauge cells and extrapolation as shown in Figure 6.

13



Figure 6: Thermodynamic extrapolation approach for dilute simulations. The first step
(A) involves gauge cell Monte Carlo simulations with a dilute solution of 1,4-dioxane and water in
the main cell, in chemical equilibrium, with two fixed ideal gas gauge cells that measure the partial
pressures of 1,4-dioxane and water. We adjust the size of the 1,4-dioxane gauge cell to sample low
concentrations in the main cell. The second step (B) involves obtaining the free energy of transfer
from low-concentration state points, demonstrating the solute is in the Henry’s law regime, then
assuming that ∆Gtransfer extrapolates to 0.35 ppb concentration. The 1,4-dioxane concentration in
the gauge cell is calculated from Equation 1, and the ideal gas law provides the extrapolated partial
pressure. In the final step (C), NpT-Gibbs simulations use the extrapolated pressure for 1,4-dioxane
while keeping the water pressure constant, thus imposing the equivalent chemical potentials of the
dilute mixture onto a zeolite box.

3.3.1 Gauge cells and thermodynamic extrapolation

We performed simulations with 30 1,4-dioxane and 1800 water molecules, and we obtained

different fluid concentrations by setting the 1,4-dioxane gauge cell size to varying volumes,

from 100
3 Å3 to 310

3 Å3. However, when we increased the simulation box side length

beyond 310 Å, all of the 1,4-dioxane left the gauge cell simulation box, so no statistically

meaningful concentration remained. We adjusted the water gauge cell size to enable swaps

of approximately 4 water molecules between the main cell. We then fixed the water gauge

cell size for all the state points analyzed by increasing the 1,4-dioxane gauge cell size.
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Since the system under investigation is at a low temperature (300 K), we faced sampling

challenges in particle insertions. We had swap acceptance rates of about 0.001, even while

considering 32 trials for insertion and 16 orientational trial positions. A drawback of using

this gauge cell approach over traditional NpT -Gibbs is we also can not implement identity

switch moves to boost sampling efficiency.

N
mix
14DX ρ

mix
14DX ∆G

∗0
14DX

[molec/nm3] [kJ/mol]

2.33 0.0355 −8.85

2.73 0.0425 −9.33

3.84 0.0607 −9.84

4.35 0.0677 −9.23

5.62 0.0874 −9.06

6.83 0.1064 −8.85

Table 1: Free energy of transfer
for the lowest six state points.
The average free energy is ∆G∗0

14DX =

−9.2 kJ/mol. The subscripts report
uncertainty to the last significant figures
of the mean values.

For each state point, eight independent simulations

were conducted with a minimum of 400k MC cycles;

and some state points required up to 500k cycles

to equilibrate. While separate production runs were

not performed for this setup, we used Chodera’s

equilibration detection method72 to determine the

regime of the data deemed to represent equilibrium.

We determined the mean free energy of transfer for

1,4-dioxane at the six lowest concentrations in the

main cell, as shown by the data points to the left

of the black dashed line in Figure 7 and Table 1.

Using that free energy and health-based reference

concentration in Equation 5.3, we compute the 1,4-

dioxane concentration in the gauge cell. Applying Henry’s law for this concentration, we

obtained a corresponding pressure of 5.8 × 10
−11 bar for 1,4-dioxane. The Supplementary

section 5.4 includes the plot of pressure versus concentration, along with step-wise

calculations for extrapolation. The pressure in the gauge cell of water is the average across

the state points and is 4.5 × 10
−2 bar. We finally use these pressures for 1,4-dioxane and

water to set up NpT -Gibbs simulations at 300 K and model adsorption with 50 1,4-dioxane

molecules and up to 1600 water molecules.
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Figure 7: 1,4 dioxane concentration in gauge cell versus in the main cell. The six lowest
data points, to the left of the black dashed line, were used to calculate the change in Gibbs free
energy (∆G). The red dashed line represents the point where the main cell contains only one 1,4-
dioxane molecule.

We used a series of gauge cell simulations in order to validate that we are in the infinite

dilution regime. A more efficient approach would be to perform gauge cell simulations at just

one concentration (as low as possible) and obtain free energy of transfer (∆G) from this. By

using a series of simulations, however, we established that this system is in the Henry’s law

(infinite dilution) regime. While we are not <1 molecule / simulation box, the trend of the

state points suggests we are not seeing significant 1,4-dioxane — 1,4-dioxane interactions.

When we impose the extrapolated 1,4-dioxane partial pressure and the water partial

pressure on the zeolite box, our state point will be at a slightly lower total pressure than

the 1 atm that was fixed thermodynamically in the gauge cell simulations due to the loss of

some 1,4-dioxane. We anticipate this will be a minor effect, given the low concentrations.
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An alternative method for obtaining a water partial pressure for the extrapolated system is

to measure this in a system of pure water instead of obtaining it from systems with small

amounts of solute.

3.3.2 Selectivity in Mixture Adsorptions

Mixture adsorption experiments were conducted across all zeolite frameworks using four

different setups. Each setup had increasing minimal simulation cell volumes that were scaled

by a factor of 8 to create supercells, as shown in Figure. 1. This approach enabled us to

effectively sample 1,4-dioxane at extremely low loadings of parts per billion concentrations

in water.

Eight independent simulations were conducted for each zeolite framework setup, with

180k equilibration and 120k production cycles. Figure 8 illustrates the loading per unit

volume of zeolites across different unit cell sizes. FER exhibits the best performance among

all the zeolites, followed by EUO, IFR, BEA, MFI, and MOR. A notable increase in loading

is observed when the unit cell is scaled up by a factor of 23 times the unit cell volume, with

FER demonstrating the most significant improvement. Scaling the unit cell beyond this

point does not result in much performance gain.

Framework Loading @Unary Loading @512
[molec/nm3] [molec/nm3]

FER 5.6 × 10
−6

8.1 × 10
−6

EUO 3.2 × 10
−6

3.9 × 10
−6

IFR 1.5 × 10
−6

1.1 × 10
−6

BEA 4.6 × 10
−7

4.5 × 10
−7

MFI 3.6 × 10
−7

4.1 × 10
−7

MOR 2.0 × 10
−7

2.1 × 10
−7

Table 2: 1,4-dioxane loadings are similar in
unary and mixture systems at extrapolated
pressure.

The mixture adsorption loadings

follow the unary loadings trend when

we extrapolate the 1,4-dioxane loadings

in the unary simulations using Henry’s

Law down to the set pressure of 5.8 ×

10
11 bar for mixture adsorption loadings

(Table 2). While unary adsorption

trends alone could potentially identify

the best framework for adsorption, our

method provides accurate estimates of
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selectivity and loadings under specific environmental conditions.

The simulations with large zeolite supercells are feasible with few adsorbates only because

of the excellent hydrophobicity of these materials; if much water were to co-adsorb, the

simulation would require more water molecules and become computationally expensive. We

further verify this by calculating selectivity that also considers water rejection by these zeolite

frameworks.

BEA EUO FER IFR MFI MOR

1μ

2μ

4μ

8μ 1
8
64
512

Zeolite Frameworks

Lo
ad

in
g 

[m
ol

ec
/n

m
 3  ]

Figure 8: Predicted 1,4-dioxane loading from 0.35 ppb aqueous solution. The x-axis lists
the six zeolite frameworks for the four simulation box sizes (1, 8, 64, and 512 times the volume of
the minimal simulation box for each framework) with loading in the y-axis.

Selectivity here is defined as the ratio of 1,4-dioxane to water in the zeolite simulation

box (Supplementary section 5.5), normalized by the health-based reference concentration of

1,4-dioxane in number ratio, that is:

Rc = 0.35 ppb = 0.35 µg/L =
N14DX

Nwater
= 7.17 × 10

−11 (4)

Using this value of Rc, we determine the selectivity as:

Selectivity, Sads =

(N14DX
Nwater

)
zeolite

Rc
(5)
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Table 3: Selectivity of the frameworks at 1
3 (1), 23 (8), 43 (64), and 8

3 (512) times the
original unit cell. All values were calculated from each of the eight independent simulations and
reported as mean, and uncertainties are reported in subscripts as the standard error of the mean to
last significant figures.

Frameworks Sads @1 Sads @8 Sads @64 Sads @512

(×106) (×106) (×106) (×106)

BEA 0 0.338 0.782 0.811

EUO 0 2.014 1.982 1.971

IFR 0 0.822 0.123 0.111

FER 0.755 8.762 8.702 8.724

MFI 0 0 0.241 0.231

MOR 0 0 0.111 0.111

Table 3 summarizes the selectivity of 1,4-dioxane for each zeolite framework investigated.

All zeolites are extremely selective, with enrichment in the zeolite phase relative to the

water phase by at least a factor of 105. FER is even more selective, with Sads of 8.7 × 10
6.

Additionally, Figure 9 showcases snapshots of mixture adsorption loadings in FER, varying

across different unit cell sizes. The selectivity trends are similar to 1,4-dioxane loadings,

with FER being the most selective among others. The selectivity also level-offs after the first

scaling of 23 of the unit cell volume, indicating the upper limit needed for this concentration

of 1,4-dioxane in the mixture.
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Minimal simulation cell @1 Minimal simulation cell  @512
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Unit cell (2,2,3)

FER 
Unit cell (2,4,2)

Figure 9: Simulation snapshots from mixture adsorptions show that FER rejects more
water than MFI. The water ratio in MFI to FER is 3.8 across the unit cell volumes.

From the number of 1,4-dioxane and water molecules adsorbed in the zeolite framework

(Tables 7 and 8), we can determine its efficacy in filtering 1 L of water to produce a 0.35

ppb outlet stream. For example, 1 gram of FER removes 65% of 1,4-dioxane from a feed

with a concentration of 0.99 ppb, while the same amount of MOR removes only 5% from a

feed concentration of 0.37 ppb. Table 9 in Supplementary section 5.5 lists some predicted

amounts of removal for 1, 10, and 100 grams of zeolite for both FER and MOR frameworks.

4 Conclusions and Outlook

Accurately modeling water treatment systems is challenging due to the presence of numerous

unknown substances, which vary in their concentrations and often interact with each other.

This study addresses two key challenges: identifying effective adsorbents for an emerging

water pollutant and sampling the system under environmentally relevant concentrations.

This methodology sets the stage for further exploration of effective adsorbents for other

emerging contaminants, such as PFAS, arsenic, and chlorinated species. However, the efficacy
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of this method is contingent upon both the adsorbent’s selectivity for the target pollutant and

its ability to reject solvent simultaneously. This stringent requirement limits the approach’s

applicability to certain types of materials (e.g. very hydrophobic sorbents).

The unary adsorption simulations helped pinpoint frameworks with high-loading capacity

and pore-size compatibility with 1,4-dioxane. The investigations uncovered a smaller pore

size in the FER framework that snugly accommodates 1,4 dioxane. Furthermore, our mixture

adsorption simulations with water indicate that FER possesses exceptional selectivity for low

concentrations of 1,4-dioxane; it particularly becomes more apparent in simulations with

supercell construction of zeolite frameworks.

The adsorption concentration differs significantly from the environmental concentrations,

implying that hydrophobic all-silica zeolites are ultraselective adsorbents, as the latter can

be considered to be infinitely diluted. However, it is challenging to synthesize them without

defects19, which enable water coadsorption and would undermine selectivity. This work

aims to motivate the synthesis of these zeolites to be used in various separation processes,

particularly in water pollutant remediation, where these interactions can play a crucial role.

We also achieve large selectivities here while only involving physisorption interactions because

of the tight fit of 1,4-dioxane in FER. In other contexts, chemisorption is used to remove

trace contaminants from water76–78 as the means of providing the strong intrinsic interaction

to pull the dilute solute from the solution. Traditional Monte Carlo simulations do not have

interaction potentials for chemisorption; the development of these could further extend the

applicability of this approach.
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5 Supporting Information

5.1 Zeolite Frameworks
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Figure 10: The zeolite frameworks investigated in this study, with their pore size and structures
(not to scale).
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Table 4: Zeolite Unit Cell Parameters

Framework a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] unit cell [x,y,z] refs

BEA 12.6614 12.6614 26.4061 90.00 90.00 90.00 [3 × 3 × 2] 79

EUO 13.6950 22.3260 20.1780 90.00 90.00 90.00 [2 × 2 × 2] 80

FER 14.0703 7.4197 18.7200 90.00 90.00 90.00 [2 × 4 × 2] 81

IFR 18.6524 13.4960 7.6311 90.00 101.98 90.00 [2 × 3 × 4] 82

MFI 20.0220 19.8990 13.3830 90.00 90.00 90.00 [2 × 2 × 3] 83

MOR 18.2560 20.5340 7.5420 90.00 90.00 90.00 [2 × 2 × 4] 17
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5.2 Force field parameters

Table 5: Force field parameters of 1,4-dioxane, water and zeolite

parameters for non bonded potentials

type pseudo atom σ [Å] ϵ/kB [K] q [e] refs

CH2–[O]–CH2–CH2 O 2.39 155.0 −0.38 50

O–[CH2]–CH2–O CH2 3.91 52.5 0.19 50

H–[O]–H O 3.154 78.0 0 84

[H]–O–H H 0 0 0.52 84

H2O–[M] M 0 0 −1.04 84

[Si]–O Si 2.30 22.0 1.50 51

Si–[O] O 3.30 53.0 −0.75 51

parameters for bonded potentials

fixed bond length [Å] refs

CHx–CHy 1.5400 50

CH2–O 1.4100 50

H–O–H 0.9572 84

bend angle kθ/kB [K/rad2] θ0 [deg] refs

CHx–(CHy)–O 25150 112 50

CHx–(O)–CHy 30200 112 50

torsion c0/kB [K] c1/kB [K] c2/kB [K] c3/kB [K] refs

O–(CH2)–(CH2)–O 13537 10876 5223 −123 50

CH2–(CH2)–(O)–CH2 7037 14958 7606 1546 50

5.3 Free Energy of Transfer

When examining phase separation, the most suitable thermodynamic parameter is the

chemical potential, µ, at equilibrium. In all phases, µ remains the same, and any change in

µ will affect the flow from one phase to another. For two phases, α and β, in which a solute
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molecule, s, is distributed, if both phases are at the same temperature and pressure, the

chemical potential of s will be identical in both phases. This can be expressed as follows:

µ
α
s = µ

β
s (6)

Applying the chemical potential formula for solvation where we impose very low concentrations

of s in both phases, we get

µ
∗α
s + kT (ln ραs ) = µ

∗β
s + kT (ln ρβs ) (7)

Here k, T , and ρ are Boltzmann constant, temperature, and number density of s in each

phase. By rearrangement, we can write the solvation of Gibbs free energies as

∆G
∗β
s −∆G

∗α
s = (µ∗β

s − µ
∗ig
s ) − (µ∗α

s − µ
∗ig
s ) (8)

which is,

∆G
∗β
s −∆G

∗α
s = µ

∗β
s − µ

∗α
s = kT [ln (ρ

α
s

ρ
β
s

)
eq
] (9)

Now, when the phase α is an ideal gas, ∆G
∗α
s = 0, thus equation 9 reduces to:

∆G
∗β
s = kT [ln (ρ

ig
s

ρ
β
s

)
eq
] (10)

For a system in which the vapor and liquid phases of a pure component are in equilibrium,

we can determine the solvation Gibbs energy of the component in its pure liquid state,

provided that the vapor pressure is sufficiently low to be considered an ideal gas.

If s is very dilute in phase β, the limiting form of the equation is:

∆G
∗0
s = kT [ln (ρ

ig
s

ρ
β
s

)
eq
] (11)
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and therefore, the Gibbs free energy of transfer from the mixture of a dilute solution of

1,4-dioxane in water to gauge cell (GC) is:

∆G
∗0
14DX = kT [ln (ρ

GC
14DX

ρmix
14DX

)
eq
] (12)

5.4 Gauge Cell Extrapolation

The extrapolation from the gauge cell simulations is described here.

Table 6: Health-based reference concentration (Rc) in different units

Value Unit

0.35 ppb

0.35 µg/L

2.39 × 10
−9 molec/nm3

The mean free energy of transfer for the six state points with the lowest 1,4-dioxane

concentrations is:

∆G∗0
14DX = −9.2 kJ/mol (13)

Using this value for ∆G
∗0
14DX and reference concentration 2.39 × 10

−9 molec/nm3 in

Equation 5.3, we get concentration in gauge cell at 300 K as:

ρ
GC
14DX = 6.11 × 10

−11 molec/nm3 (14)

We then plot the pressure in the gauge cell versus the concentration in the main cell.
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Figure 11: 1,4-dioxane concentration versus pressure in the gauge cell. Since the concentrations
are extremely low, and the relationship is linear within the uncertainty limits, we can equate the
slope as Henry’s constant for extrapolation.

To calculate the slope of the straight line in Figure 11, we fit the points using linear

regression and setting the intercept as zero. This gives us a slope of 0.0105 with units

of molec / (nm3 kPa). Using this slope, we then extrapolate the pressure for reference

concentration as:

ρ
GC
14DX = H × P

P =
ρ
GC
14DX

H
(kPa)

P = 5.8 × 10
−9 kPa

P = 5.8 × 10
−11 bar

(15)

The pressure calculation in the gauge cell for water is straightforward, as it is just the
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average of all the simulation state points conducted, which is 4.5 kPa or 4.5 × 10
−2 bar.

5.5 Selectivity

Table 7: Mean number of 1,4-dioxane molecules inside zeolite simulation boxes from eight
independent simulations. Uncertainties are reported as the standard error of mean in subscript
for the last significant figure.

Frameworks N14DX@1 N14DX@8 N14DX@64 N14DX@512

BEA 0 0.000113 0.002174 0.017544

EUO 0 0.001593 0.012485 0.09992

FER 0.000021 0.002015 0.01603 0.12965

IFR 0 0.000295 0.003254 0.026697

MFI 0 0 0.001704 0.012918

MOR 0 0 0.000595 0.004903

Table 8: Mean number of water molecules inside zeolite simulation boxes from eight independent
simulations. Uncertainties are reported as the standard error of mean in subscript for the last
significant figure.

Frameworks Nwater@1 Nwater@8 Nwater@64 Nwater@512

BEA 0.962 4.951 38.75 303.32

EUO 1.362 11.075 87.97 705.83

FER 0.4003 3.202 25.72 207.35

IFR 0.601 5.12 39.08 327.81

MFI 1.513 11.92 97.56 781.82

MOR 1.211 9.465 76.94 613.91
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Table 9: Predicted fractional removal for different zeolite amounts and frameworks to output
health-based reference concentration of 0.35 ppb 1,4-dioxane filtering 1 L of contaminated water for
zeolite minimal simulation cell @64.

Framework Zeolite Weight Feed Stream Fraction removed Outlet

(g) Conc. (ppb) Conc. (ppb)

FER

1 0.99 0.645 0.35

10 6.71 0.948 0.35

100 64.0 0.995 0.35

MOR

1 0.37 0.048 0.35

10 0.53 0.336 0.35

100 2.12 0.835 0.35
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