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Abstract

Nuclear Magnetic Resonance (NMR) structure determination is an important problem in education, industry,
and research. Solving NMR spectra requires expert knowledge, critical thinking, and careful evaluation of
multiple features of spectral data. This study explores the capabilities of large language models (LLMs) for
solving NMR spectral tasks. We selected 115 problems from NMR-Challenge.com, which has been used by
students practicing NMR structure elucidation, collecting > 1 million human responses, and developed a plain
text problem format for evaluating LLM reasoning in this domain. We evaluated 7 LLMs (GPT-4o, GPT-4o-
mini, o1, o1-mini, o3-mini, Claude-3.5 Sonnet, and Gemini-2.0-Flash), comparing 5 prompts to spur chain-
of-thought reasoning in di�erent ways, especially comparing the influence of providing background NMR
chemistry knowledge, reasoning strategy, or both. Newer models trained to emphasize reasoning performed
better, and increasing reasoning e�ort led to modest improvements, but prompting and varying temperature
didn’t have an e�ect. We also evaluated undergraduate organic chemistry students in a controlled setting,
and analyzed answer submission statistics from global submissions to NMR-Challenge.com, to characterize
human performance on these problems. The top-performing students surpassed smaller models like GPT-4o
by 24%, 33%, and 29% on the Easy, Moderate, and Hard sets. However, reasoning models like o1 exceeded
student performance by 13%, 14%, and 19%, respectively. Patterns in mistakes made by humans and LLMs
reveal that errors made by LLMs are similar to those typically made by humans, for instance, incorrect
positioning of substituents on benzene and incorrect orientation of carboxyl groups in esters. However,
LLMs still “think” di�erently from humans, in some cases, providing answers which no human submitted
via the website. This work also illustrates how NMR spectral problems can be used to benchmark LLMs on
reasoning-heavy tasks in chemistry, though for this particular set of problems, current LLMs already exceed
undergraduate student performance.

1 Introduction

AI-augmented systems have grown significantly with the increasing capabilities of language models. The
improvement results from two key factors – scaling model parameters or scaling inference times. The research
landscape surrounding foundational language models is rapidly evolving. While larger models generally
retain a performance edge, recent work with rstar-math [1], DeepSeek R1 [2], and others [3, 4] shows that
smaller models can rival and occasionally exceed the performance of much larger ones. As more powerful
models become available at lower costs, especially open-source ones, we can expect yet more increase in their
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applications. The scientific research community will also leverage these advancements in AI-assisted systems
across the fields of chemistry, biology, and materials science.
Large Reasoning Models (LRMs) are language models that “reason” using more tokens to analyze and explore
di�erent aspects of a problem in depth [5]. The early demonstration of this approach is seen in the basic
Chain of Thought (CoT) prompting technique [6, 7]. Since then, e�ective strategies have been outlined in
the literature, including reinforcement learning [2], supervised fine-tuning [3], and preference modeling [1].
These systems are designed to think deliberately [8] for problem-solving — reflection, backtracking, and
trial-and-error — and some can even outperform humans [9].
Most studies on the reasoning capabilities of LLMs focus on their abilities to solve problems in math or
planning. For instance, when employing in-context learning for mathematical problems like division, we
present the model with several input-output examples, and the observed improvements are attributed to
the model’s inductive reasoning abilities, but the problem itself more closely aligns with deductive reasoning
[10]. This overlap of prompting technique and problem type makes it di�cult to identify areas where
LLMs need improvement in their reasoning abilities. This work provides benchmark data for complex,
non-linear problem-solving in organic chemistry, while also addressing a practical challenge: identifying
chemical structures that can explain observations from Nuclear Magnetic Resonance (NMR) spectroscopy
experiments.
NMR uses oscillating magnetic fields to analyze molecule structures from their chemical shifts [11, 12].
Atoms resonate at di�erent frequencies based on their local unique environments, and the resulting NMR
spectrum provides insights into interactions among specific atoms within a molecule, ultimately deducing
the molecule’s whole structure. NMR spectroscopy is an example of abductive reasoning used in scientific
problem-solving. As this process involves using observations (NMR spectrum) to infer the most plausible
explanation for a phenomenon (molecule identity), it is a form of “inference to the best explanation” where
the goal is to identify the hypothesis that most likely explains the observed data [13]. Solving NMR spectral
tasks “increases students’ critical thinking abilities because they have to evaluate multiple aspects at the
same time, such as the number, intensity, and shape of signals, chemical shifts, and J-coupling values” [14],
making these tasks a mainstay in undergraduate training in organic chemistry.
Modern tools for NMR structure determination most commonly include methods based on deep neural
networks [15–23] and Transformers [24–28]. These approaches frame the problem as a supervised learning
task, with spectra as features and molecular assignments as labels. After the model has been trained,
inferences about new spectra can be obtained as model predictions. However, such methods typically rely
on black-box architectures and hence do not o�er explanations for their results. They also do not handle
corner cases and instances not encountered during training well and require curated, large-scale labelled
datasets, which are expensive to assemble for training. Automated tools that use formal logic have also been
explored to identify molecules from spectral data [29–32]; however, they demand considerable e�ort from
human experts to define the rules of the system accurately.
We recognize solving an NMR spectral problem as fundamentally a multi-step reasoning task [33], and
aim to explore the reasoning capabilities of LLMs. Previous studies have focused on predicting observable
signals from SMILES strings or molecular structures [34], or on extracting the NMR data itself [35], while
this work highlights the reasoning capabilities of LLMs by providing the necessary data for predicting the
molecule. The concept was developed during our 2024 LLM Hackathon for Applications in Materials and
Chemistry project, where we manually curated NMR datasets to test our approach [36]. We found GPT-4
to be successful in some cases, however the scratchpad showed interesting patterns of (apparent) reasoning
in its outputs. Building on this preliminary work, this paper presents an improved benchmark dataset and
a systematic exploration of prompting strategies, temperatures, reasoning e�orts, and models in identifying
molecules from NMR spectra.
This work focuses on a single task in chemistry to evaluate the performance of LLMs, in contrast to other
benchmarks that combine various sub-fields [37–39] or tasks together [34,40]. Similar to the recently proposed
ChemIQ benchmark [41], our prompting approach is open-ended rather than employing multiple-choice
formats. However, we specifically instruct the LLM to identify chemicals from spectral data by their names
and then convert the answer to SMILES ourselves during the grading process. In contrast, ChemIQ requires
the generation of SMILES strings from NMR data, which introduces an additional reasoning component.
Although an LLM may accurately identify the name of a molecule, it could still produce an incorrect SMILES
string, making it di�cult to identify its reasoning errors. Converting a molecule name to a SMILES string
representation involves additional reasoning, which could be explored in future research.
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2 Method

2.1 Data Processing

We used the NMR spectral data that was used to create NMR-Challenge.com, an interactive website featuring
exercises categorized into Easy, Moderate, and Hard levels [14, 42]. For each problem, the website provides
images of 1D spectra (1H, 13C, 19F) at the basic level and additionally 2D spectra (COSY, HSQC, HMBC)
at the advanced level, along with the corresponding chemical formula. We selected 53 Easy, 38 Moderate,
and 24 Hard problems, and used MNOVA [43] multiplet analysis to extract and summarize numerical data
about peaks. The multiplet analysis compresses the raw spectra data, making the input text more tractable
for the LLMs, which was not done in the Hackathon version of our project [36]. This also prevents direct
feeding of website data to the LLMs, reducing the risk of triggering memorization. For humans with access
to the visual spectrum, peak-picking may be useful, but not likely as critical. We organized these data in
JSON format where each entry contains molecular formula (if applicable), a unique problem ID, and an
array of information about each peak: label with multiplicity, chemical shift, integration range, hydrogen
count, integral value, multiplicity class, and J-coupling values as shown in Figure 1.
In the runs in which we did not provide the molecular formula, we normalized the peak integrals to give the
smallest peak an area of 1, to prevent leakage of information about the number of hydrogens associated with
each peak. For example, C4H8O2 has peaks A, B, and C with integrals of 3.0, 2.05, and 3.02, respectively.
Normalization yielded values of approximately 1.46 for A (3.0/2.05), 1 for B, and approximately 1.47 for C
(3.02/2.05). When analyzing the data alongside the molecular formula, the normalized integrals correspond
to the number of hydrogen atoms present. However, without the formula, the normalized values only provide
relative ratios without specific hydrogen counts. Additionally, we conducted another set of experiments that
included unnormalized 1H-NMR and 13C-NMR data, along with the molecular formula in the prompts, to
replicate the conditions for solving these problems as you would on the website.

Formula : C4H8O2

Name Shift Range H's Integral Class J's Method

1 A (s) 2.07 2.08 .. 
2.05

3 3 s Sum

2 B (q) 4.14 4.17 .. 
4.11

2 2.05 q 7.14, 
7.14, 
7.14

Sum

3 C (t) 1.28 1.30 .. 
1.26

3 3.02 t 7.16, 
7.16

Sum

Formula : C4H8O2

Name Shift Range H’s Integral Class J’s Method

1 A (s) 171.2 171.29 .. 
171.11

1 0.89 s Peaks

2 B (s) 60.42 60.51 .. 
60.33

5 5.37 s Peaks

3 C (s) 21.08 21.15 .. 
21.01

2 1.97 s Peaks

4 D (s) 14.22 14.31 .. 
14.13

5 4.78 s Peaks

1H NMR

13C NMR

Extracted data from 1D Spectra using MNOVA:1D Spectra:

JSON formatted NMR data:

#1H  NMR

#13C  NMR

Figure 1: Dataset processing for input into the LLMs. The table above (in red box) illustrates the
raw data extracted from MNOVA software for C4H8O2 from the NMR challenge website. The information
is then organized in JSON format, with selected information sent to the LLMs/LRMs, depending on the
testing condition.
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2.2 Experiment Details

We evaluated seven large language models (LLMs) on the NMR benchmark, including GPT-4o, GPT-4o mini,
o1, o1-mini, o3-mini from OpenAI [44], Claude-3.5 Sonnet from Anthropic [45], and Gemini-2.0-Flash from
Google DeepMind [46]. We varied the model temperature when allowed to assess the e�ect of deterministic
versus stochastic token sampling on performance. Aside from OpenAI’s GPT-4o and GPT-4o mini, other
models are described as reasoning models that employ some form of scaled test-time computation [47].
However, since the models are not open source, we do not know exactly how reasoning works for the majority
of them.
Each model was tested with five prompt styles to establish baseline performance and evaluated with and
without chemical formulae in the spectral information. The prompts were designed to assess how varying lev-
els of guidance influence the reasoning process and overall model performance. In particular, we considered
the domain of NMR structure elucidation as requiring domain-specific knowledge as well as domain-specific
problem-solving strategy. For instance, the characteristic shifts, peak intensities, and splitting patterns as-
sociated with important functional groups would be learned knowledge. In contrast, “iteratively hypothesize
fragments before synthesizing a whole structure (and repeat until the solution is consistent)” would be logical
strategy.

P1. Base prompt: This prompt provides minimal user input, allowing for non-guided generation. It was
used as a control condition to observe the inherent reasoning abilities of LLMs for solving NMR spectra
problems.
P2. Standard CoT prompt: This prompt uses the standard CoT prompt introduced by Wei et al. [7]
which encourages step-by-step reasoning to solve complex problems.
P3. CoT prompt with logical tips: Building on the standard CoT, this prompt variation includes
domain-specific logical tips. It encourages the model to identify fragments, rank hypotheses, verify stoi-
chiometry, and propose plausible molecular fragments, while ensuring consistency in connectivity.
P4. CoT prompt with knowledge: A human expert on NMR data interpretation provided approxi-
mately 1 page of guidance on domain-specific knowledge involved in solving NMR spectra, for instance, the
characteristic shifts, peak intensities, and splitting patterns associated with important functional groups.
P5. CoT prompt with knowledge and logical tips: This is the most comprehensive of our modalities
and combines the CoT prompt with logical tips and human expert insights.

2.3 Evaluation Metrics

To evaluate how well large language models (LLMs) predict molecular structures from NMR spectral data,
we needed a reliable method to compare their output to the correct answer, given that a molecule can have
many di�erent names, and we could not anticipate which name the LLM would generate. We retrieved
Simplified Molecular Input Line Entry System, i.e., SMILES [48] representations of chemical names for the
correct answer and the LLM’s response using a Python library called CIRpy. CIRpy converts any chemical
identifier to another chemical representation developed by the CADD Group at the NCI/NIH [49].
We graded the prediction of the models using multiple criteria: compound name matching, SMILES string
match, and Tanimoto similarity using rdFingerprintGenerator in RDKit [50]. A prediction received a
score of 1 if any of the following conditions were met: (1) the predicted compound name matched the ground
truth name; (2) the predicted and ground truth SMILES matched exactly; (3) the Tanimoto similarity
exceeded similarity exceeded 0.99, confirming that the molecules were truly identical. All models produced
responses with varying adherence to the template provided in the context. Consequently, di�erent functions
were written to extract the name of the molecule, with some answers requiring manual extraction. We
did not penalize models in assessing their chemical reasoning abilities if they failed to follow our specified
output template. However, we observed that models that scored higher in NMR structure determination also
tended to follow instructions correctly more often. We then verified instances where CIRpy failed to generate
SMILES strings against PubChem to distinguish between cases where the LLM predicted chemically invalid
compound names versus actual CIRpy limitations.

3 Results and Discussion

We organize our findings into three sections. First, we analyze the performance of all models under varying
temperatures, prompting styles, and reasoning levels in solving NMR spectra problems. Next, we show
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results of human performance on the same problems. Finally, we present additional experiment results
where we align LLM conditions more closely with those used in human testing.

3.1 Tuning Prompts, Temperature, and Reasoning Depths of LLMs and LRMs

3.1.1 E�ect of Prompting Style

Easy problems consistently scored the highest in both experiment settings – with and without formula
included. Moderate and Hard tasks have similar accuracy when formula is included. However, there is a
significant drop in performance for Hard tasks, which fell well below Moderate tasks when no formula is
included.
We hypothesized that incorporating domain knowledge and logical tips into our prompts would lead to
systematic improvements in model performance. However, in practice, neither LLMs nor the LRMs showed
any benefit from these advanced prompt templates. In fact, we sometimes observed a decline in scores for
example, Gemini 2.0 Flash scored dropped from P4 to P5 on Easy problems (with formula), and Claude
Sonnet 3.5 score fell from P1 to P2 on Moderate problems (with formula). The changes are minimal for most
models, with some modest improvements; however, no consistent upward or downward trend is observed,
contrary to our expectations. OpenAI’s guide to using reasoning models dictates that these models perform
better on tasks with high-level guidance alone, and that CoT-type prompts may impede performance, which
seems to be observed in some of the cases here [51].

Figure 2: E�ect of prompting style across NMR problem di�culties. We experimented with five
prompting styles. Here, P1 represents the base prompt, P2 is the standard CoT prompt, P3 is the CoT
prompt with logic, P4 is CoT with knowledge, and P5 is CoT with both logic and knowledge. All model
data presented here is for temperature T1 and the default reasoning e�ort (medium) is used for OpenAI
models.
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3.1.2 E�ect of Temperature

Figure 3: E�ect of temperature across NMR problem di�culties for base prompt (P1). Four
temperature levels were experimented: T0, T0.5, T0.8, and T1.

We tested the e�ect of temperature on four models: GPT-4o, GPT-4o mini, Claude 3.5 Sonnet, and Gemini
2.0 Flash. The other OpenAI models (o1 mini, o3 mini and o1) have their temperature fixed at 1 as part of
model design.
In all panels of Fig. 3, we see no consistent e�ect of temperature across model type or di�culty level.
No model significantly outperforms or underperforms at any given temperature. However, the average
performance consistently follows the order from Easy to Moderate to Hard across all models. Notably,
including the formula significantly improves accuracy: the “with formula” conditions (top row) consistently
achieve much higher scores than their “without formula” counterparts (bottom row). These findings are
also consistent across other prompt types (see Figure 9 in SI). Another study [52] also noted that if a model
performs reasonably well at problem-solving, temperature values between 0 and 1 do not significantly impact
the results.
At its core, temperature impacts the softmax function used to generate output probabilities that create
responses token by token. Lower temperatures sharpen the distribution, making the model more determinis-
tic. Higher temperatures lead to more randomness and a uniform output distribution. This randomness can
foster creativity for certain tasks, but it can also result in inaccuracies due to unpredictability. Addition-
ally, we cannot pinpoint the e�ects of temperature across models, as they use di�erent search algorithms,
which may or may not be influenced by temperature. For example, a model using beam search behaves very
di�erently from one using greedy search [53]. We anticipated that a higher temperature would encourage
creative hypothesis formation and hinder precise reasoning, potentially leading to counterbalancing e�ects.
However, we did not observe significant e�ects in any of the cases.

3.1.3 E�ect of Reasoning E�ort

Reasoning models provide both a response and a CoT, allowing them to learn not just “what” to answer
but also “how” to answer. This improvement in performance, as they generate more tokens, is called
inference-time scaling. This is achieved in various ways, such as selecting the best answer after sampling
many generations (output-focused) or modifying the proposal distribution (input-focused) by assigning more
weight to reasoning tokens.
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Figure 4: E�ect of reasoning e�ort across NMR problem di�culties and prompting styles.
OpenAI’s o3 mini model was tested in this study.

The recent OpenAI reasoning models provide fine-tuning through reasoning e�ort tuning as a hyperparam-
eter. The reasoning effort parameter has three settings: low, medium, and high. Low prioritizes speed
and uses fewer tokens; high enables detailed reasoning. The default setting is medium, which balances speed
and accuracy. We tested the o3-mini model with varying levels of “reasoning e�ort” to observe how it reasons
and performs across the NMR problem categories. Across all prompt styles, higher reasoning e�ort leads to
better scores (see Fig. 4) as expected. In the “with formula” condition, the gap between low, medium, and
high e�ort is wider for Moderate and Hard problems. Conversely, the “without formula” condition shows a
narrower gap with di�culty, and overall lower scores. We can apply high reasoning e�ort to di�cult problems
(Moderate/Hard, ”with formula”) or to problems with unknown domains (Easy, ”without formula”).

3.1.4 Overall Model Performance

When we aggregate results across various prompting styles, temperatures, reasoning e�orts, and di�culty
levels, we observe that reasoning models outperform regular LLMs in both experimental settings, with and
without the molecular formula. The scores with the molecular formula are consistently three to six times
higher than those without. The models analyzed in this study are closed-source, so we cannot assess their
performance based on size or complexity. However, there is a correlation between higher output costs and
improved performance (see Table 1).

Model Release Date (MM/YY) Output cost per 1M tokens ($) Score, with formula (%)
GPT-4o mini 07/24 0.6 12
GPT-4o 05/24 10 26
o1 mini 09/24 4.4 30
Gemini 2.0 Flash 02/25 0.4 40
Claude Sonnet 3.5 06/24 15 55
o3 mini 01/25 4.4 68
o1 12/24 60 75

Table 1: Comparison of models with their output costs and performance with formula. Prices were retrieved
from their o�cial documentation on 05/2025.

Among the models, Gemini 2.0 Flash was the least expensive on a per-token basis (including over lower-
performing LLMs GPT-4o and GPT-4o-mini), while o1 was the most expensive.
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Figure 5: Aggregated model performance. From the right, model o1 leads with about 75% accuracy
when formula is included, compared to only 25% without it. Next is o3-mini, scoring approximately 68%
with formula and about 16% without. Claude 3.5 Sonnet follows with 55% accuracy when using formula
and 14% without. Gemini 2.0 Flash scores around 40% with formula, but only 9% without it. Both o1-mini
and GPT-4o perform in the 30s to mid-20s with formula, respectively, but their scores drop to around 4%
without it. Finally, GPT-4o-mini has the lowest performance, achieving about 12% with the formula and
only about 2% without.

3.2 Assessing Student Performance

Figure 6: Student performances across NMR problems. Stacked bars show the percentage of correct
(green), wrong (purple), and wrong with an incorrect molecular formula (beige) responses for all students
(right) and the top-quartile students (left).

The study involved 140 undergraduate students enrolled in the Organic Chemistry Laboratory course at
the University of Maryland, Baltimore County (UMBC). Before participating in this research, the students
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had covered the topic of NMR spectroscopy and had approximately two months of experience with it. Each
student was assigned six problems categorized as Easy, three as Moderate, and two as Hard, all delivered
through the interactive testing environment on the NMR-Challenge.com website [14,42]. Additionally, they
were given six optional problems to solve, with two from each category. While they could take as long as
necessary, they were encouraged to spend around 15 minutes on each problem.
NMR-Challenge.com provides molecular formulas, as well as images of both 13C-NMR and 1H-NMR spectra
with annotated peak information, and tasks students with drawing a chemical structure in the app. Sub-
mitted answers are graded immediately, with additional feedback provided if the submitted answer had the
wrong formula. To identify the top quartile, we grouped participants by “Participant ID” and counted the
number of NMR problems each attempted and the number they answered correctly. We then calculated an
individual accuracy rate by dividing correct answers by total attempts. We set the 75th percentile of these
accuracy rates as the cut-o� for the top quartile. 39 of the 140 participants met this threshold and were
labeled top quartile, shown in the plot on the right. Section 5.2 in SI shows the distribution of problems
attempted by students across NMR problem di�culty levels.

3.3 Comparing Students vs. LLMs and LRMs

Figure 7: Comparison of human vs. model accuracy across NMR di�culty. The bar plot on the
left (A) shows the performance of LLM models under conditions matching the human experiment conditions.
Bar plots on the left (B) show the mean percentage of correct responses for top quartile human participants
(in green), top reasoning model (o1, in yellow) and top non-reasoning model (GPT-4o in purple), with
error bars indicating the standard error of the mean (SEM). For human data, we first computed each top
quartile participant’s percentage of correct responses separately for Easy, Moderate, and Hard problems, i.e.,
(number correct÷number attempted◊100), and then averaged those percentages across the participants; the
SEM reflects variability across participants. For the LLM, percentage correct was aggregated for three
reasoning levels and five prompt types; the SEM reflects variability across experimental settings.

Since NMR-Challenge.com [14, 42] provides molecular formulas as well as images of both 13C-NMR and
1H-NMR spectra, we conducted an additional experiment with the LLMs. The main di�erence from our
previous experimental runs was the inclusion of 13C NMR data alongside un-normalized 1H NMR data
(formatted in JSON as illustrated in Figure 1), so that human participants and LLMs received the same
information. That said, the human participants had access to visual representations of the spectra, while
the LLMs were provided with a text input after multiplet peak analysis. This text-based input would
have been challenging for human participants, in any case. While researchers have explored multimodal
approaches and visual language models for interpreting NMR spectra [23, 54–56], our work emphasizes
reasoning capabilities, which are better evaluated when decoupled from perception-related issues associated
with figure interpretation. The aggregated model performance across temperatures, prompts, and reasoning
levels with molecular formula included is shown in the left panel of Figure 7A.
The performance trends for the models are consistent with our previous runs, with o1 leading with an
accuracy of 79%. o3-mini follows at 72%, then Claude 3.5 Sonnet at 60%. Gemini 2.0 Flash scores around
42%, similar to its performance in the previous run under similar conditions. o1-mini and GPT-4o score about
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29%, while GPT-4o mini has the lowest performance at about 13%. Overall, performance improved compared
to previous runs, indicating the benefit of incorporating 13C NMR data (and illustrating that these models
are able to e�ectively make use of 13C NMR data). In the right panel of Figure 7B, we categorically compare
the performance of top quartile students with the leading reasoning and non-reasoning language models. The
results show that students outperform GPT-4o (LLM); however, o1 (LRM) outperforms students across all
categories of problems.
These findings do not detract from NMR’s special position in chemical education, and we recommend that
instructors continue teaching and assigning NMR spectral tasks. NMR spectral tasks have long been a
mainstay of chemical education, specifically because they cultivate critical thinking alongside understanding
of molecular structure and characterization. After all arithmetic has been essential for math education, both
before and after calculators could perform this task more easily and accurately than humans. The presence of
new AI tools for solving chemistry problems doesn’t necessarily change what problems are best for building
up human skills.

3.4 Error Pattern Analysis of LLMs and Humans

Both humans and LLMs must generate and navigate an implicit “space” of possible structural hypotheses
to evaluate and rank. We presume that when a human or an LLM produces a formula-consistent yet
inaccurate answer, this reveals characteristics of the hypothesis spaces generated and navigated by humans
and LLMs. If an LLM’s answer is provided in a direct response (no chain of thought), we could enumerate
possible answers, and measure log probabilities of the tokens to decipher the model’s relative ranking of
hypotheses. However, the scratchpad renders this approach invalid, and we also don’t have access to what
the humans were thinking; so we instead analyze the distribution of right and wrong answers as indicative
of this distribution of hypotheses.

True Answer GPT-4o o1 NMR-Challenge

2-MethoxyacetophenoneMethyl 4-methylbenzoateMethyl benzoateMethyl o-methylbenzoate

4'-Methoxyacetophenone benzyl acetatePhenoxy-2-propanone

2-bromophenol 4-bromophenol 3-bromophenol 4-bromophenol

3-ethoxybenzaldehydeethyl benzoate2-ethoxy benzaldehyde

*Incorrect  
formula

*6

*5

*1 *2

*5 *1

Figure 8: Analyzing patterns of errors. The numbers in blue asterisk (in GPT-4o and o1 answers)
indicate its rank among the most frequently submitted incorrect structures by global human participants
on NMR-Challenge.com. Structures in the last column represent the most common incorrect submissions
from human participants, all of whom are students, not experts in NMR data interpretation. For a complete
list, refer to 5.3. A previous study [14] identified common mistakes made by humans, which include the
recognition of isomeric esters (top 2 rows) and the identification of substitution positions in disubstituted
benzenes (bottom 2 rows).
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The most common mistakes made by language models in comparison to human participants across all 115
benchmark problems are listed in SI section 5.3, with a subset illustrated in Figure 8. The human participant
data for comparison is from global submissions to NMR-Challenge.com, since it has a large database (of over 1
million submissions) and is more statistically significant. In contrast, the study involving UMBC students in
Section 3.2, while gathering many fewer responses, provides a controlled environment for assessing accuracy,
since website submissions allow humans multiple tries. We extracted the most common mistakes made from
language models by combining the answers from all experiments conducted with the o1 and GPT-4o models
in section 3.3. For o1 model, each problem has 5 (prompt variations) ◊ 3 (reasoning e�ort) possible answers,
and GPT-4o model has 5 (prompt variations) ◊ 4 (temperature variations) possible answers.
In our opinion, one of the most fundamental reasoning aspects of these problems (when the formula is
provided) is ensuring that the hypothesized molecule has the correct formula. By simply checking the
formula (and not giving up!), one can be certain to prevent wrong answers of this kind. Yet for GPT-4o,
this was the most common failure mode: 60 out of 115 problems had molecules with an incorrect formula
as the most popular wrong answer. This revealed an astounding inability of GPT-4o to perform in-context
reasoning about the most basic aspect of its answer, the formula. In comparison, the o1 model showed
a markedly lower incidence of incorrect molecular formulas (7 out of 115) in its most common erroneous
output. This is much better, but far from perfect reasoning behavior: keep in mind that we specifically
prompted these models to “be mindful of stoichiometry and ensure consistency with the given formula”, and
models failed to follow this instruction if they didn’t continue to perform this check until they generated a
consistent guess. NMR-Challenge.com records answer submissions, but doesn’t store those with incorrect
formulas, so this particular error type could not be directly compared to human submissions.
The NMR-Challenge.com website data does allow us to evaluate more advanced errors, arising when the
formula is correct, yet the answer is incorrect. Comparing these errors from LLMs and human participants
reveals overlapping reasoning patterns and shared failure modes. Across the benchmark set of 115 problems,
GPT-4o scored 100% in 17 cases (14 classified as Easy and 3 as Moderate), never generating an incorrect
answer for us to consider. For these same tasks, human participants on the NMR-Challenge.com platform
achieved success rates ranging from 41% to 100%, with an average of 80%. In contrast, GPT-4o scored 0%
on 36 tasks (8 Easy, 15 Moderate, and 13 Hard). Human performance on these tasks was also significantly
lower, with success rates between 8% and 64% (mean: 39%). Among the 38 tasks where GPT-4o did not
succeed in 100% of the trials but generated structures with correct formulas—reveals further insight into
the model’s behavior. In 8 of these cases, the GPT-4o output matched the most frequently submitted
incorrect structure by human users. An additional 6 and 12 cases matched the second and third-to-fifth
most common incorrect human submissions, respectively. In 10 cases, GPT-4o’s proposed structure was
observed less frequently among human responses, and in 2 cases, GPT-4o’s answer was unique, and never
submitted to NMR-Challenge.com. In contrast, o1 scored 100% in 68 tasks (43 Easy, 17 Moderate, 8 Hard),
for which the average human success rate was 57%. It failed entirely on 7 tasks (1 Easy, 3 Moderate, 3
Hard), scoring 0% where the average human success rate was 35%. Among tasks not consistently solved by
o1, only 7 featured incorrect molecular formulas in its most common erroneous output. For o1’s incorrect
but formula-valid predictions (in 40 tasks), alignment with human errors was again notable: 13 matched the
most common incorrect human structure, 3 matched the second most common, and 8 matched the third-
to-fifth most common. In 12 cases, o1’s outputs were less frequently observed among human submissions.
Two incorrect structures were not observed in the human dataset, and two were chemically invalid due to
violations of basic valency rules (e.g., pentavalent carbon, trivalent oxygen). However, we cannot compare
these to invalid molecule responses from humans, as the NMR-Challenge website provides strong feedback
via the drawing tool, which is not provided in the LLM’s text-based environment. All incorrect structures
proposed by the models are detailed in 5.3.
The most common structural errors made by the LLMs share many features with the most frequent incor-
rect submissions by human participants on NMR-Challenge.com [57]. Previous work has characterized the
common failure modes of humans in these problems [14]; we find that LLMs likewise su�er from similar fail-
ure modes, especially misassigning the positions of substituents on aromatic rings and incorrectly orienting
ester functional groups. These recurring mistakes highlight specific challenges in interpreting NMR spectra
that are common to both human and machine reasoning. These results point to two possible conclusions
about the nature of human and LLM reasoning in NMR structure determination. First, it may suggest a
convergence between the reasoning pathways of LLMs and humans when interpreting NMR data, especially
in the nature and distribution of incorrect structural hypotheses. However, even if LLMs and humans reason
rather di�erently about these problems (such as when incorrect LLM-generated answers were never proposed
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by humans), their answer distributions can still look similar when a handful of high-probability hypotheses
dominate, while rare alternatives will remain hidden with standard sampling.

3.5 Suitability of NMR-Challenge.com as an LLM benchmark

Our benchmark includes 115 problems with experimental spectra, for which human performance data is
available. With o1 already achieving 60% accuracy on Hard problems and outperforming top students
(Figure 7), this suggests our benchmark is already or nearly saturated by existing LLMs (though they have
some room for improvement). Generating synthetic NMR spectra of increasing di�culty could be considered
next, though one would need to be careful in the problem design to avoid indeterminacy. We aimed to
focus this benchmark on reasoning and non-linear problem-solving capabilities, and thus our pre-processing
pipeline (multiplet analysis) transformed the raw spectra into a more abstract representation. If more than
one structure could be a faithful explanation of the collection of multiplets, then grading would become
problematic. The current dataset avoids ambiguity, having been carefully designed by human educators to
have a single correct answer.
In terms of practical implications, we think these frontier chatbot models would not be the best choice
for automating NMR structure determination in laboratory settings – that task would be better handled
by specialized ML systems. Specifically purpose-built transformer models trained on millions of synthetic
spectra [25, 27, 54] would almost certainly excel on our benchmark; such tools are reported to demonstrate
e�ectiveness on molecules with 19 heavy atoms and trillions of isomers [27] (our dataset does include a
few molecules with up to 23 heavy atoms (ID 174), but these have substantial symmetry that make them
still tractable for human problem-solving). Such models might exploit subtle signal patterns in their large
training datasets that wouldn’t be reflected in human reasoning. General-purpose AI can and should be
capable of understanding molecular structure through chemical reasoning, but don’t necessarily need to be
equipped for such intense tasks. We found anecdotally that chatbots can address highly related tasks, such
as “What parts of this molecule correspond to this peak?” Such questions cannot even be posed to systems
take raw spectra as input and output SMILES. Just as a chatbot should ideally be able to add 2-digit
numbers, while switching to a calculator for evaluating 8-digit multiplication, a chemical reasoning model
should ideally know when to switch from chain of thought reasoning in a domain it understands, to calling
domain-specific tools (like a fine-tuned ML model for raw spectra-to-SMILES) when faced with a scenario
in which reasoning is unlikely to be su�cient.

4 Conclusions

This work is an initial reasoning-focused LLM benchmark for evaluating chemical problem-solving in the
NMR domain, in which chemistry knowledge is intertwined with complex, multistep reasoning. The study
demonstrates that language models can interpret chemical structures from NMR spectroscopy data, with
older, non-reasoning models like GPT-4o demonstrating significantly poorer performance than more recent
reasoning-focused models like o1. o1 outperformed top undergraduate students in these tasks, but is not a
perfect reasoner, continuing to make mistakes such as answering with a molecule whose formula is inconsistent
with that given in the prompt. Language models implicitly use chain-of-thought reasoning, and neither
temperature nor prompt engineering consistently a�ect their performance. Humans and LLMs generally
found the same sets of problems to be easy and hard, and share common failure modes (e.g. incorrectly
orienting ester functional groups), yet some LLM-generated answers had never been guessed by humans.
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