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Abstract

Step-by-step thinking is essential in all domains of chemical sciences
and engineering. While machine learning tools are broadly used, algo-
rithms that automate reasoning are far less common. We elaborate on
seven categories of human reasoning activities and connect each to appli-
cations in chemical science and engineering: inductive, deductive, abduc-
tive, probabilistic, causal, analogical, and informal reasoning. For each,
we describe approaches and tools for implementing in computational set-
tings. We find the traditional categories of logic (induction, deduction,
abduction) to be useful for interpreting a wide range of research activities
in the computational sciences: curve fitting and supervised learning are
induction, predicting from a curve or a supervised model is deduction,
first-principles simulations are deduction, molecular structure elucidation
is abduction, and inverse design is isomorphic to abduction. Experimen-
tal design incorporates themes of all three, but also stands apart be-
cause it modifies the data. We also survey the “reasoning” capabilities of
large language models, and illustrate some challenges and opportunities
in building systems that learn to reason. Central concepts that emerge in-
clude the dual nature of reasoning as propositional and step-by-step (the
“what” and the “how”), the importance of appreciating syntax and se-
mantics, and the centrality of abstraction in formal and informal contexts.
Throughout, we highlight untapped opportunities, including bug-free sci-
entific computing software, predictive modeling approaches to generalize
outside training data, inverse design, and automated hypothesis genera-
tion and evaluation.

1 Introduction

Machines have been emulating scientists since the dawn of artificial intel-
ligence. DENDRAL, the first expert system, was designed for analyzing mass
spectra (I). BACON automated the discovery of scientific equations from data
2). “Adam” automated hypothesis formation and testing via robotic experi-
ments in yeast genetics (3]). As capabilities for AT have grown, a grand challenge
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Figure 1: Types of different reasoning chains; yellow circles indicate path to fi-
nal answer, while gray circles indicate unneeded steps or dead ends (these imply
backtracking). Shallow problems only require retrieval of correct answer among
many candidates. Deep problems can be narrow, only requiring deterministic
program execution, or incorporate different elements of width, whether by re-
trieving the right narrow program to execute, searching for a path to an answer,
or searching for multiple pieces of intermediate information needed to synthesize
of final answer. The role of inspiration is roughly illustrated as a need to “come
up with” ideas, one of which is critical for continuing the chain, and that these
are somehow “inspired” by the context of the problem and solution thus far.

has been proposed — could an AI make scientific discoveries worthy of a Nobel
Prize (4 [B)? While the 2024 Nobel Prizes recognized the impact of artificial
neural networks and AlphaFold (6) as tools enabling humans to advance science,
fully autonomous discovery of such impact is beyond current systems (7). Typ-
ically, computer algorithms acting as “artificial scientists” suggest experiments,
generate hypotheses, and discover properties, but still require “human input,
interpretation, and integration with existing knowledge.” (8]).

Nonetheless, in arena after arena, as machines’ capabilities increase, humans
have adopted them in ever-increasing ways. Machines have long bested humans
at memory and arithmetic (which is why we store data on hard drives and
use calculators to calculate tips). Competitive games like chess (), Jeopardy
(I0), Go (II)), StarCraft (12), and Diplomacy (13) have seen machines beat-
ing or competitive against top humans. Each milestone was made possible by
smarter algorithms and more powerful hardware. The latest Al systems use
large languages models (LLMs) to excel over many (but not top) humans at
standardized tests like the LSAT exam (14; [I5) and the International Math
Olympiad (16} 17 18).
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What underscores the more challenging milestones is the role of reasoning
in complex problem solving. Reasoning can be thought of as thinking through
a step-by-step path from what is known to what is unknown, resulting in a
reasoning chain with some amount of “depth.” Jeopardy questions are generally
“shallow,” involving memorization and retrieval of facts, while chess is “deep”
(can you think 4 moves ahead?). Fig.[l|illustrates the diversity of chains involved
in solving different kinds of problems. FExecuting a program (Fig. ) is a
primitive form of reasoning (multiplying large numbers requires a deep path,
but applying the steps is monotonous and repetitive). Some problems may
involve identifying a program that’s suitable for the question at hand, and then
simply applying it (Fig. ) — an example would be “plug and chug” problems in
engineering education that require students to match the context of the problem
to an equation from the textbook before substituting values and solving for
the unknown. Some scientific derivations are examples of Fig. [Id, where the
path forward might not be clear at the start, but trying different steps and
backtracking can illuminate the path to the solution. Solving NMR spectra is
an example of Fig. [Tk, where one gleans bits of insight by studying each group of
peaks, then incrementally consolidates that information until the solution can
be constructed. Finally, “inspiration” can play a role, as well (Fig. ) Consider
how one solves certain differential equations — an important step might be “guess
that the solution has the form y = Asin(z) + B cos(z).” Whether the guess is
useful will be verified later, but where the guess comes from can be mysterious;
it’s often drawn from some combination of experience, appreciating the context
of the problem, and learning from earlier unsuccessful attempts.

Reasoning is also compositional, in that a reasoning chain may itself contain
reasoning chains. This helps to clarify the role of external tool use in problem
solving. The query, “What is the vapor pressure of n-hexane at 78 °C?” il-
lustrates this in Fig. |2l Neither shallow retrieval (Fig. ) nor simple program
execution (Fig. [Ib) can solve this problem; the intrinsic information process-
ing required is simply too complicated. Nonetheless, along the reasoning chain,
smaller sub-problems arise that can be solved in these ways. Thus a human may
use search tools and a calculator along their path to the final answer — these are
specialized tools with “narrow” intelligence. The “extended mind thesis” (19)
is a neat concept to consider here. With a tool capable of generalized problem
solving, the user-facing complexity is completely abstracted away. Nonetheless,
the intrinsic information processing required for this question remains; in the
case of an LLM solving this using chain of thought, this processing occurs in
pre-training and while generating the chain of thought (see Section .

Shallowness and depth do not necessarily correlate with problem difficulty.
Multiplying two eight-digit numbers is a very deep problem, made trivial by
calculators. Some shallow questions are “hard” in the sense that, most people
wouldn’t get it correct on a standardized test, because most people wouldn’t
have it memorized, but let them use a search engine, and they’ll find it much
easier. Benchmarks like Google-Proof Q&A (20) acknowledge this, where human
performance is measured in a context where they have a long time to solve the
problem and access to Google.
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Figure 2: Composition and modularity in a reasoning chain. The chain on the
left represents “all the information processing involved in solving the problem,”
with steps handled by specialized, external tools shown in green boxes. The
center chain abstracts away the details of the external tools, and evokes how a
human might solve the problem with Internet access and a calculator. In the
chain on the right, the human uses an Al tool that abstracts away all the steps
and delivers the answer (which may or may not explain the steps it took).
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“Machine learning” (ML) is often conflated with “artificial intelligence” (AT).
While definitions and are difficult to pin down and vary among experts (21} 22))
and throughout history (23)), here, we define ML as the class of algorithms
that improve automatically through experience, without being explicitly pro-
grammed to do so, while Al is the broader category study of machines mimicking
“cognitive” functions that humans associate with the mind. ML is essentially
about identifying and memorizing patterns in data. Predictions about new
observations are based on connecting new observations to patterns in prior ex-
perience (the training data). In particular, Al includes reasoning, a collection
of functions associated with step by step thinking. Planning, logic, decision-
making, verification, and mathematical problem solving all involve reasoningEI

Daniel Kahneman popularized a 2-system theory of human decision-making
in his book “Thinking, fast and slow” (26). Humans use System 1 for rapid
and imprecise pattern recognition in intuitive and reflexive tasks, and System
2 for conscious, deliberative tasks like reasoning and planning. To illustrate,
consider multiplication. Many of us memorized “times tables” as a child. We
can quickly answer “7 x 7 = 49” because the answer is memorized. But for
T77x77, we must switch from recall to reasoning, break the problem down into
pieces, solve them one by one, and synthesize the answer. In chemistry students,
“Chemical intuition” and heuristic reasoning have been interpreted in light of
System 1 and System 2 (27).

Recently, Al researchers have been explicitly aspiring to build machines that
“think fast and slow” (28} 25)). Sometimes these are separate computational
modules with different functions (these systems are often categorized as “neu-
rosymbolic AT”) (29) and sometimes in a single integrated system, such as large
language models (LLMs) optimized to think step by step (See Section .

Machine learning has exploded in the chemical sciences. The primary driver
for adoption of these pattern-recognition algorithms is that they prove to be
profoundly useful for analyzing high-dimensional datasets in the chemical sci-
ences and engineering. Nonetheless, pattern recognition alone isn’t enough to
solve the hardest challenges we face; memorization is not enough. Reasoning
greatly expands the range of problems we can solve. The future of artificial
intelligence in the chemical sciences will see increased adoption of algorithms
that go beyond basic pattern matching (295 [30]).

This perspective aims to provide an accessible introduction to reasoning
in logic and computer science for chemical scientists and engineers. We high-
light the importance of these in engineering problem solving, highlight historical
and modern developments in the AI community around automated reasoning,
identify recent work developing and applying these tools for problem solving
in science and engineering, and suggest opportunities for the future. Section
covers the central categories of formal reasoning (induction, deduction, and

'Tn humans, learning and reasoning are intertwined (24), after all, humans improve their
decision-making, planning, and math abilities with practice and experience. In artificial sys-
tems, these functions have typically been distinct; for example, image recognition uses purely
ML algorithms while math calculations are executed using pre-programmed calculators. Merg-
ing these is an active area of research (25)). LLMs apparently do this, as well (Section .
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abduction), as well as probabilistic and causal reasoning. Section [3| covers as-
pects of informal reasoning relevant to chemical science, especially analogical
reasoning and chain-of-thought “reasoning” by LLMs. Finally, Section [4] dis-
cusses broader perspectives on reasoning as “being” vs. “doing”, syntax and
semantics, and the role of abstraction.

2 Formal reasoning

Induction and deduction are two kinds of logic that have been studied for mil-
lennia. The third pillar of reasoning, abduction, was formulated in the 20th cen-
tury by chemistry and philosopher Charles Peirce. Such reasoning approaches
are described as formal when they can be expressed in precise mathematical
terms. Humans also engage in informal reasoning; analogical reasoning, spa-
tiotemporal reasoning, and commonsense reasoning also involve step-by-step
thinking, but are usually not expressed precisely.

2.1 Inductive reasoning

Inductive reasoning starts from specific observations and reasons toward
general conclusions. “Swan #1 is white” & “Swan #2 is white” & “Swan #3 is
white” — “All swans are white.” Induction is unreliable, in that even when the
premises are true, the conclusions are only probabilistically true. After all, no
number of observed white swans preclude the existence of a black swan. “The
sun will rise tomorrow” is an inductive conclusion born from observations (the
sun rose today, yesterday, etc.). In fact, every statement about the future is
an inductive leap; David Hume famously showed that such conclusions rely on
a hidden assumption (the world will be the same tomorrow as it was today)
that itself can only be proved using inductive reasoning about the future, which
becomes a circular argument (31]).

Nonetheless, induction is critical for everyday life, and indeed serves as the
foundation for all statistical learning algorithms. Consider curve fitting (Fig.[3):
when observations in the training set are used to fit a model, one is obtaining
a general rule (the model parameters) from specific observations. This rule is
henceforth used to make predictions about unseen data in the test set (this
is deduction, discussed shortly). The general rule only approximately follows
from the observations — this logical framework is the foundation of all supervised
learning algorithms that fit a model to data (32]).

Some AT systems prior to the 2000s incorporated algorithms for induction,
in order to teach rules to expert systems with less human expert support. Meta-
DENDRAL was an early example of this, which used mass spectrometry data
to reverse-engineer rules for DENDRAL to use in structure elucidation (IJ).
Another example included automated construction of rules for an expert system
for HPLC column selection in enantioseparations (33).
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Figure 3: Fitting models (in this case, linear and exponential functions) to data
is inductive reasoning (form a general conclusion from specific observations),
while making model predictions (marked by x) is deductive reasoning (use a
general principle to derive a specific conclusion).
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2.2 Deductive reasoning

Deductive reasoning starts with general premises (assumed to be true) and
proves that specific conclusions follow. “All men are mortal” & “Socrates is a
man” imply “Socrates is mortal.” Deduction is a reliable logical framework, in
the sense that, if the premises are true, then the conclusions are guaranteed to be
true, as well. More precisely, arguments using correct deduction are always valid
(the step-by-step reasoning process is correct), but they are only sound when
the premises are true. Sound arguments reason correctly from true premises,
and always produce true conclusions.

Mathematics is fundamentally deductive. After assuming a foundation of
mathematical axioms (axiomatic systems include set theory (34) and type theory
(35), repeated application of deduction enables construction of an ever-growing
edifice of mathematical knowledge. The question of “are the premises true in
the real world?” doesn’t typically concern a pure mathematician. Part of the
beauty of this “world of math” is that deductions are proved valid without
concern for their soundness; mathematical progress continues independently of
whether new math is immediately useful.

In this way, every derivation in science and engineering can be seen as a
logical deduction. One assumes the premises of some physical model, then
proceeds through various transformations of the equations until one arrives at
the conclusion. Fig. 4] illustrates this for Langmuir’s theory of adsorption (30).
The isotherm equation is rigorously deduced from the model assumptions. When
the isotherm equation doesn’t describe a real-world system very well, we don’t
question the derivation (which is logically valid so long as the math is correct)
— instead, we question whether the premises of the model adequately represent
the real-world systemEI

Planning is a sub-field of deductive reasoning, concerning actions, time, and
events. “If this valve in a chemical plant is closed at time t, then X, Y, and Z
will occur” or “If precursors A and B react under these conditions, then product
C will be formed.” A network with dozens or hundreds of steps can be reasoned
over to make predictions about cause and effect. Such networks can also be the
subject of optimization, to improve process safety, reliability, or profitability.
In fact, “expert systems” (the predominant form of “artificial intelligence” from
the 1970s to the early 2000s), use logical deduction to reason about a knowledge
base of facts to derive new facts or evaluate hypotheses.

2.2.1 Expressivity in deduction

Deduction is categorized into different kinds of logic based on the complexity
and expressivity of the statements they reason about. This drives the availability
and effectiveness of computational tools, so here we summarize a few important
kinds of logic and the computational tools for solving them.

2This is about semantics (which refers to the meaning behind the scientific model), which
is distinct from the question of logical syntax.
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Figure 4: Derivations in science and engineering are isomorphic to theorems
in mathematics, as illustrated by Langmuir’s theory of adsorption (37)). Such
derivations can be formalized in a theorem proving system (36)).

Propositional logic is the SimplestEI, using only the logical operators AND,
OR,NOT, IF ... THEN, and IF AND ONLY IF. First-order logic (FOL) includes
these operators, and adds FOR ALL and THERE EXISTS operators, as well
as the equality relation and functions that can return true or false depending
on the properties of entities. For example, imagine a function ContainsHydro-
gen(molecule) that returns FALSE for CO2 and TRUE for HoO — this function
can be expressed in FOL, but not in propositional logic. Higher-order logics like
set theory and type theory generalize further, and can be used to define and
reason about real numbers (like 7 and v/2), limits and calculus, infinity, etc.

More expressive logics en-
able more compact represen-

\ Dependent type theory (DTT,
P P v (et tations of scientific knowledge.
+ g
For example, a first-order logic
Higher-order logic (HOL N

o l\::sr:ive ' & S term ContainsH(molecule) can
P ) ) generalize an infinite number

First-order logic (FOL) . ..
Harder to of statements in propositional
automate Satisfiability modulo logic: “H2O contains hydro-
/ theories (SMT) gen,” “n-octane contains hydro-
gen,” “ibuprofen contains hy-

Propositional logic (SAT) ;
drogen,” etc. This compactness

is critical for representing ab-
Figure 5: Hierarchy of logics and their solvers. gt act ideas, but this generality

comes at a cost: it affects the
kinds of computational tools that can be leveraged to solve such problems and
the efficiency of automated search for solutions (Fig. |5)).

3Even simpler logics can be constructed, for example, by restricting propositional logic to
simpler classes of clauses like Horn clauses, but these are typically only of academic interest.
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SAT solvers address the Boolean satisfiability problem (SAT) in proposi-
tional logic, and aim to determine whether these exists an assignment of truth
values (true or false) to variables in a propositional logic formula. While SAT
problems in general have been proven to be NP-complete (the computational
cost for solving a problem scales exponentially with problem size), commercial
and open-source SAT solvers can efficiently solve many practical SAT problems.
SMT solvers (Satisfiability Modulo Theories) expand SAT solvers to address
problems somewhat between propositional and first-order logic, adding theo-
ries, like arithmetic and arrays, to propositional logic. SMT solvers like Z3 (38)
are capable of expressing a function CountHydrogens(molecule) that returns an
Integer (not a Boolean true/false), and representing arrays as variables, which
are not single entities. These still operate efficiently, by reducing the problem
to SAT at the core and relying on efficient SAT solving techniques.

SMT solvers approach first-order logic, but they cannot express arbitrary
first-order logic statements, such as reasoning about “there exists” over arbi-
trary sets, not just Integers. Solvers are available for full first-order logic (FOL
solvers), but this crosses a theoretical threshold: SAT is decidable while full
first-order logic is undecidable. This means that we have a method to solve
every SAT / SMT problem; even if the computational cost is exponential, the
procedure will eventually finish in finite time. FOL is undecidable, meaning no
single algorithm is capable of solving every FOL problem (39; [40)). FOL solvers
employ algorithms and heuristics that automatically solve many problems, but
their success is not guaranteed. Moving to higher-order logics adds further
expressivity and complexity; tools like Isabelle (higher-order logic, HOL) and
Rocq / Lean (dependent type theory, DTT) can express and prove virtually any
mathematical statement, but importantly, they don’t operate automatically like
SAT, SMT, and FOL solvers. Instead, these are interactive theorem provers that
primarily facilitate verification of proofs written by humans (or coding LLMs
(I6; [41)). Even though higher-order logics are undecidable, this doesn’t mean
proofs aren’t possible, only that no single algorithm can solve every statement.

Overall, we recommend weighing these considerations when formulating the
logic for your scientific problem. If you can represent all the important facets of
your domain of study using exclusively propositional logic, then you’ll benefit
from efficient SAT solvers. If you require first-order logic, then an interactive
theorem prover like Lean might be overkill in terms of expressivity, with a com-
parative loss in automated solving capability compared to a focused FOL solver
like Vampire (43). In certain domains, specialized tools have been developed
with built-in heuristics to facilitate problems in that domain. For example,
KeYmaera X (44) is a FOL solver optimized for symbolically reasoning about
cyber-physical systems characterized by ODEs, including chemical reactors (45).
That said, higher-order logics subsume lower-order logics; FOL solver Vampire
also solves SMT and SAT problems automatically, and Isabelle has the Sledge-
hammer tactic (46) which attempts to convert a type theory problem into a
first-order logic problem, then solve it automatically using an external, auto-
mated FOL solver. We are personally invested in learning Lean 4 (47)), the
newest of the tools mentioned thus far, which maximizes expressivity using de-
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/ Formalized derivation of Langmuir adsorption \
import Mathlib

—— Name the theorem and define the variable types as Real
theorem LangmuirAdsorption {6 K P r_ad r_d k_ad k_.d A S_tot S : R}

—— Premises

(h1 : r_ad = k_ad * P x S) —— Adsorption rate expression

(h2 : r_d = k_d * A) —— Desorption rate expression

(h3 : r_ad = r_d) —— Equilibrium assumption

(h4 : K =k_ad / k_d) —— Definition of adsorption constant
(h5 : S_tot =S + A) —- Site balance

(h6 : 8 = A / S_tot) —— Definition of fractional coverage
(h7 : S+ A =0) —— Constraint to avoid division by zero
(h8 : kd + k_ad x P = 0) —— Constraint to avoid division by zero
(h9 : k_d = 0) : —— Constraint to avoid division by zero

—— Conjecture

6 =Kx*x P/ (1 +KxP) := by —— Langmuir adsorption equation

-— Proof starts here

-— Goal: h1-h9 -——> 86 =K x P / (1 + K *x P)

—— Perform substitutions using the rw tactic

rw [h1, h2] at h3

rw [h6, h5, h4]

—— Goal: h1-h9 -—> A / (S +A) = k.ad / kd*P / (1 + k_ad / k_d *x P)
—— Remove denominators and simplify using field_simp tactic

field_simp

—— Goal: h1-h9 ——> A % (k_d + k_.ad x P) = k_ad x P x (S + A)

—— Use a 'calculation' block to close goal with ring and rw tactics
calc

A x k_dx A+ k_ad *x P x A := by ring
_ = * A := by rw[h3]

_ P
K_ _ S + A) := by ring /

Figure 6: Formal proof of Langmuir’s theory of adsorption in Lean 4, updated
from the Lean 3 proof in (36]) and a Lean 4 proof in (42). Comments (in green)
annotate the premises, conjecture, and proof steps. Nine premises (h1-h9) imply
the conjecture (6 = K xp/(1 + K * P)). or here for a stable version.

pendent type theory while facilitating low-level automation via tactics. Fig. [0]
shows how Langmuir’s theory (Fig. E[) can be derived in Lean 4.

For example, the recent work by Clymo, et al. used an SMT solver (Z3,
(38) to navigate expert-specified constraints on the space of possible material
compositions (48). The authors chose to incorporate constraints like charge
neutrality, which can be expressed in linear arithmetic (and thus accommodated
efficiently by Z3). But they were selective about the constraints they chose,
either because Z3 cannot support them, or because Z3 supports them but their
inclusion would dramatically affect efficiency. They describe their reasoning

(48):
“There are other constraints that might be desirable but cannot

be expressed in this theory. For example, we could not constrain
the variance of ionic radii using linear constraints, since calculat-
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ing the variance requires the non-linear square-root function. By
restricting attention to queries that can be expressed as a combi-
nation of linear constraints we have balanced flexibility and solving
time. It would be possible to include more constraints by using a
more expressive theory, as the SMT solver Z3 we have used sup-
ports non-linear arithmetic of different types, including polynomial
real arithmetic; however this would substantially increase solving
time in a problem-dependent manner that is hard to predict.”

2.2.2 Deduction, predictive modeling, and statistical learning

Applications in predictive modeling have been the mainstay of applications
of machine learning in the chemical sciences. Neural network- and Gaussian
process-based tools are powerful and flexible predictors when high quality “big
data” is available, but often, chemical data acquisition is the bottleneck (49),
whether synthesis (50), characterization (5II), or performance evaluation (52)).
Machine learning algorithms learn to interpolate within the convex hull of the
data, and are unreliable for extrapolation (albeit, for high-dimensional deep
learning systems, the story is more nuanced (53))). However, logical deduction
is not limited by the boundaries of the data in the same way that typical ma-
chine learning approaches are. The boundaries of deduction are given by the
“deductive closure,” which refers to the set of all possible statements (which
can often be infinite) that can be deduced from a given set of assumptions.

For example, machine-learned interatomic potentials (MLIPs) perform best
near their training data, and are generally not trusted to extrapolate (54 55}
56). An MLIP trained on molecules containing only H, C, N, and O atoms
cannot be trusted for compounds with sulfur or lead (or even HCNO molecules
with out-of-distribution geometries). Researchers have developed approaches
to dynamically expand the training data (e.g. (57; 58} [59)) and have sought to
build ML potentials with training data from the whole periodic table (e.g. (60)).
Such strategies arise from a paradigm of data-driven interpolation, where the
problem is seen as a gap in the data, and the solution is to obtain such data and
fit a new model that doesn’t have such a gap. Essentially, one aims to extend
the training domain so nothing is out-of-distribution. One can also develop ML
architectures or feature representations that use the data more efficiently, but
the underlying paradigm is the same — design the domain so the anticipated use
case is in-distribution.

Deduction does not depend on data in this way. Consider electronic struc-
ture calculations as a form of deduction (Fig. E[) To compute an energy E, one
assumes A) a geometry of atoms, B) the principles of quantum mechanics, es-
pecially Schrédinger’s equation, and C) various approximations that make this
theory computable and efficient (for instance, those behind density functional
theory, and selection of a particular model and basis set). The energy of the sys-
tem follows from these assumptions, or in other words, A & B & C — E. Given
A, B, and C, the “deductive closure” here would include the results of quantum
chemical calculations for systems across the whole periodic table, at any level of
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Figure 7: Predictive modeling as deduction. First-principles modeling and sim-
ulations at any scale can be seen as performing a form of deduction, in which
the inputs & the theory “imply” the outputs.

theory encompassed in B & CE| Furthermore, A & B & C can also imply many
things beyond an energy, including forces, frequencies, band gaps, etc. — these
are in the “deductive closure” if they can be derived from the assumptions.
The deductive approach does have gaps, but of a different kind — gaps lie
in either the theory or in the algorithms. A gap in theory means that the
deductive closure for A & B & C does not contain the answer; an gap in the
algorithms means, given A & B & C, obtaining E is not efficiently computable.
An example of a theory gap would be relativistic effects — special techniques
are required for modeling for heavy atoms (61); A & B & C do not imply
accurate values for E when the theory is incomplete. Algorithmic gaps in the
deductive approach manifest in the poor computational scaling and stability of
quantum chemical calculations. One can define geometries and theory levels for
which the electronic structure doesn’t converge in a reasonable amount of time

4More precisely, A, B, and C are each sets (of geometries, and of propositions about
quantum mechanics) and E would be a set of Real-valued conclusions. The “size” of this
deductive closure would be the number of valid deductions to members of E, or the size of E.
Certain geometry/theory combinations within the set that do not lead to a valid deduction
are not included in the deductive closure. If the sets of geometries and QM models are
countable, then E is countable, and we could potentially discuss the “size” of the deductive
closure, like “the deductive closure for this set of geometries/theories is smaller than the
deductive closure for this other set of geometries/theories.” If any of the sets A, B, or C
have real-valued members (e.g. if the set of atomic coordinates includes all possible positions,
represented with infinite precision), then the deductive closure is uncountably infinite, raising
tricky questions around cardinality. But in practice, computational chemists work with finite-
precision floating-point numbers, which would always lead to countable deductive closures.
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or at all; this illustrates an algorithmic gap that can be addressed by better
task-specific algorithms. But since the theory here is far more expressive than
even first-order logic (see Section , the gap cannot be closed in general,
as the question is undecidable. MLIPs address both of these gaps. If theory
is missing and data is available (e.g. experimental measurements of systems
not yet described by known theories), such data can be added to the training
set. Furthermore, the underlying architectures of MLIPs ensure scalability and
efficiency in deployment — for many applications, this is the chief reason these
are favored over expensive DFT calculations.

This perspective essentially characterizes any form of predictive modeling
across fields of science (Fig. . A practitioner who sets up a simulation is im-
plicitly setting up the premises of a logical deduction problem; the completed
simulation reveals something that is implied by those premises. Purpose-built
software for modeling atomistic-, molecular-, kinetic-, or fluid-scale systems con-
strain the scope of the deductive task and provide algorithms to navigate oth-
erwise complex and expressive theoriesﬂ Theory-based deduction is the philo-
sophical foundation behind modeling and simulation, and enables generalization
to anything (computable) within the deductive closure. Data-driven machine
learning enables generalization within the domain of available training data.
Novel approaches integrating learning and reasoning may bring the best of both
worlds; we think neurosymbolic approaches show the most promise (62} 29).
Nonetheless, no current tools appear to perform logic with the expressivity
needed to fully encompass scientific computing applications (calculus, matrices,
etc.), likely because automating such higher-order logic is challenging, in the
general case (Section [2.2.1)).

2.2.3 Bug-free software through automated deduction

Another benefit of more deeply integrating formal deduction into scientific
computing is the prospect of writing software with formal correctness guaran-
tees. In the 1990s, a bug in the floating-point division (FDIV) assembly code
in Pentium 4 processors prompted a multi-million dollar recall (63]). A mistake
in the equipment that etched arrays into a chip caused 5 bits to be mis-written,
leading to occasional errors in FDIV operations, typically in the 9th or 10th
decimal place (64). In the following years, Intel researchers developed methods
to formally verify the arithmetic operations performed on their chips, ensuring
that these issues never arise in future chip designs (65)).

Methods for verifying software are more sophisticated now, and can be used
to verify complex properties of programs. For example, Selsam, Liang, and
Dill built a variational autoencoder (a machine learning model) using the Lean
programming language and proved high-level properties about its statistical be-
havior (66). Our research group is also using Lean to build scientific computing

5Even probabilistic simulations, such as those using Monte Carlo or evolutionary algo-
rithms, are a form of deduction (though of a probabilistic form, see Section . Though
the outputs are not deterministic, the process from inputs to outputs is still about logical
implication, with conclusions, such as ensemble properties, holding in expectation.
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software with mathematical correctness guarantees, for instance, for computing
the energy of Lennard-Jones particles in periodic boundaries (67). By linking
formalized derivations in science and engineering (e.g. Fig. |4) to executable
code in the same software environment, we can prove that the executed code
satisfies the theory. For instance, we can formally state a theorem, that the
minimum image distance between two particles, anywhere in space, is indepen-
dent of whether those particles are wrapped into the simulation box, and prove
that our implemented code satisfies this high-level theorem.

Another application is safety verification in systems of ODEs. Simple sys-
tems of ODEs can be integrated analytically, to obtain closed-form expressions
for their behavior. When symbolic integration isn’t feasible, numerical inte-
gration can provide concrete predictions for individual scenarios, such as for
a specific reaction network, with specific rate parameters, and specific input
conditions. A third way is differential dynamic logic (68)), in which one can rea-
son directly about stability, equilibrium, and reachability without integrating
the ODEs. Researchers in the cyber-physical systems field use such proofs in
domains such as self-driving vehicles (69)). Because the analysis is done symbol-
ically and not numerically, such proofs are valid across general sets of parame-
ters. Rose Bohrer’s “Chemical Case Studies in KeYmaera X” is an interesting
example of this in chemical reaction engineering (45]). We also explored sim-
ilar problems, studying isothermal batch and continuous-stirred tank reactors
(70). We were able to prove properties about whether certain concentrations
were reachable given ranges of input concentrations and system parameters. For
example, for A—B in a batch reactor, we could prove that B < Ay + By for
all time. We scaled up the reaction network complexity to Michaelis-Menten
kinetics (where analytical integration is impossible without extra assumptions),
and could prove some rather generous bounds on molecule concentrations. We
ultimately found the logic style difficult to learn and explain, and the solver,
KeYmaera X, to not be supportive of the mathematics we’d need for more in-
teresting reaction chemistry (e.g. the exp function for Arrhenius temperature
dependence). Nonetheless, further development of this approach would be in-
teresting.

2.3 Abductive reasoning

Abduction is a lesser-known form of reasoning, originally proposed by Charles
Peirce, a chemist and philosopher unsatisfied with the ability of induction and
deduction to describe the kind of thinking that a scientist does. Abduction
reasons from observations and background knowledge to explanations of phe-
nomena, it has been described as “inference to the best explanation” (71)). What
Sherlock Holmes famously described as “deduction” more closely resembles ab-
duction, as he worked backwards from effects to plausible causes (72)).

Consider a forensic chemist who has characterized a mysterious white pow-
der, observing A from NMR and B from IR. Her aim is to identify what molecule
gives the best explanation of the data. She’ll analyze the data, hypothesize that
the substance is a chemical species (e.g. ibuprofen), then argue (verify) that
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Figure 8: Abduction, also known as “inference to the best explanation,” com-
bines deduction with hypothesis formation. A hypothesis is plausible if it implies
the observations.

this hypothesis is consistent with the data and standard background knowledge
that dictates how this data should be interpreted. Or, she will find a mismatch
between the hypothesis and the data, and try again.

Formally, abductive reasoning includes a bit of deduction, along with a
unique aspect of hypothesis formation (Fig. .

1. D is a collection of data / observations
2. K is a collection of background knowledge (facts, givens)

3. H, a hypothesis, explains D in light of K (“explain” means a deduction to
prove that H & K — D)

4. No other hypothesis explains D as well as H does

5. Therefore, H is probably correct.

In the above example, H would be “ibuprofen” and D would include the ob-
servations A and B from spectroscopy, as well as background chemistry knowl-
edge (let’s call this K) that includes insights like “a molecule containing C=0
— observation of IR peak near 1700 cm~'.” If “ibuprofen” & K — A & B
(and “other molecules” & K don’t imply A & B), then ibuprofen is probably
the detected compound; ibuprofen is the “best explanation” of the data in light
of the knowledge. This problem setting is naturally multimodal; notice that A
is from NMR and B is from IR. Moreover, multiple hypotheses can imply the
same data (especially in the presence of noise); the data might not constrain the
space of possible hypotheses to a single candidate, and indeed might constrain
it too far, such that no hypothesis is supported. Jin, et al. helpfully describe
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this essential feature as a “one-to-many, non-functional” mapping between data
and predictions (73)E|

While abduction includes deduction, it is a distinct kind of reasoning from
deduction because it also requires effective hypothesis construction. Abduction
doesn’t prescribe how hypotheses should originate, though these are generally
informed by prior experience, present context, and even iteration in light of
previously-evaluated hypotheses. One could construct an abductive reasoning
system by combining an independent “hypothesis formation” module with any
of the deductive tools described in Section [2:2.I] The original expert system,
DENDRAL (), can be understood as performing abduction to solve mass spec-
troscopy problems. It integrated expert-crafted logical rules with CONGEN,
a system for generating conformers (hypotheses), in a manner that integrated
both rules and data.

2.3.1 Analogy with inverse design

In inverse design, one aims to generate a material with a target property. It
is “inverse” because having a method for predicting the properties of a specific
material is not enough, one needs to go “backwards” from the property to the
material. Both Clymo, et al. (48) and Jin, et al. (74) identified a role for
deduction to play in the context of inverse material design. Following their
lead, we noticed an analogy between inverse design and abductive reasoning:

1. T is a target property (or properties)

2. K describes a known structure-property relationship (whether data-driven
of from first principles)

3. C, a candidate, has property T in light of K (C & K — T)
4. No other candidate achieves property T as well as C does

5. Therefore, C is a suitable design.

This logical syntax is equivalent to that of abductive reasoning; they differ
only in semantics. Indeed, Clymo, et al. named their system Comgen (because it
generates compositions of materials); we couldn’t help but notice an association
with DENDRAL’s CONGEN (which generated conformers of molecules). This
also helps to crystallize the point that deduction alone won’t suffice for certain
applications in chemical science and engineering; when candidate generation or
hypothesis formation is important, additional tools will need to be brought in.

2.3.2 Automating the scientific method

With its emphasis on hypothesis formation, abductive reasoning is closely
related to the scientific method: hypothesize — experiment — analyze — sup-
port/refute hypothesis — repeat. Much work in the automation of science

SThough they, like Sherlock Holmes, refer to this abductive reasoning task as deduction.

17

https://doi.org/10.26434/chemrxiv-2025-q9bb1 ORCID: https://orcid.org/0000-0002-0100-0227 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2025-q9bb1
https://orcid.org/0000-0002-0100-0227
https://creativecommons.org/licenses/by/4.0/

instantiates different versions of this, usually without reference to abductive
reasoning per se (we noted it as future work in (75)). In traditional cases,
humans craft a well-formed “space” of hypotheses (either implicitly or explic-
itly), which is navigated via automated experimentation and evaluation. For
instance, the robot scientist “Adam” generated genomics hypotheses (in a sym-
bolic, computable representation crafted by the human designers), then tested
these hypotheses using automated laboratory instrumentation and analysis (3)).
In materials science, structured models for system behaviors can be designed
by humans, in which adjustable parameters are tested and evaluated automat-
ically (76). Likewise, reaction mechanism discovery can be formulated with
human-crafted and validated building blocks, which are combined and remixed
automatically to form hypotheses for testing and evaluation (77)). In each of
these systems, abduction (Fig. [8| plays a role for discriminating different hy-
potheses according to how well they explain the available data. The deduction
step for evaluating K & H — D is typically execution / fitting of models (which
is a form of deduction, see Section to obtain scores for ranking hypotheses
(abduction). However, note that the scientific method (automated or not) goes
beyond abduction and includes an experimental design component: assessing
the hypothesis landscape and collecting new data. As such, abduction alone
is not sufficient in environments where data is not static. Experimental design
goes beyond the traditional reasoning Categoriesm

Human scientists practicing the scientific method don’t generally predefine
a “space” of hypotheses amenable to automated testing, but construct free-
form hypotheses in natural language. The capabilities of modern large language
models have inspired researchers to task LLMs to generate research hypotheses
in natural language (78} [79). However, even when efforts are taken to control the
structure and quality of generated hypotheses, evaluation is challenging. Given
a simple problem domain, hypotheses in the form of LLM-generated code can be
executed on-the-fly (and simply rejected if code doesn’t compute) (80)). Given
a fixed repository of curated data, automated agents capable of data analysis
can evaluate natural language hypotheses about the content of the databases
(78 81])). For applications in chemical and materials science, automated agents
capable of seeking out new data are needed, especially tools for experimental
synthesis, characterization, and performance evaluation (82} [83) or simulation
setup and execution (84t [85: [86). All of these tools rely on LLM-based planning
and reasoning, which we discuss further in Section [3.3]

To summarize, abduction as formalized by Peirce considers data to be a
given, and aims for generation of hypotheses that can explain the data. It
integrates deduction with hypothesis generation, with the goal of generating
high-quality hypotheses (a.k.a. explanations). A single pass of the scientific
method considers the hypotheses to be a given, and aims for generation of data

"We considered classifying experimental design as analogous to abduction, because it in-
vokes hypothesis formation (which new data points to collect?) followed by deduction to
predict the expected properties or information gain. But on further reflection, we’ve decided
to emphasize the distinction that experimental design ultimately adds to the data, thus going
beyond the traditional reasoning pillars, which work with the data available.
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that can best discriminate among the hypotheses. It integrates abduction with
experimental design, with the goal of generating high-quality data. Recursive
application of the scientific method leads to recursive improvements in data,
hypotheses, and explanations.

2.4 Probabilistic reasoning
2.4.1 Deduction with uncertain premises

In practical settings with uncertainty, formal logic can be too rigid. One
answer to this is probabilistic logic, in which statements are assigned truth val-
ues between 0 and 1, instead of binary false (0) and true (1). Thus, uncertainty
propagates through deductive inference to obtain approximate conclusions. This
is a bit like error propagation in engineering calculations, where rules for addi-
tion, multiplication, etc. are applied to obtain the uncertainty in a calculated
output. Probabilistic reasoning applies this idea to logical operations, such as
AND, OR, and IMPLIES.

Consider a chemical reactor that shuts down if the temperature is too high.
In case a faulty sensor fails to report a high temperature, two redundant sensors
have been installed, and emergency shutoff commences if sensor A or sensor B
is triggered. A classical logic problem could be set up with three premises:

1. T > Tylarm — Sensor A
2. T > Toiarm — Sensor B
3. Sensor A OR Sensor B — shutoff.

With binary truth values, the statement “T" > T,jam — shutoff” follows
from 1, 2, & 3 above (indeed, it also follows from 1 & 3 only, and from 2 & 3,
only). Probabilistic logic enables one to incorporate probabilities on truth val-
ues, such as knowledge from the manufacturer about each sensor’s false positive
and false negative rates. If the sensors fail sometimes (1 and 2 have probability
0.99), the likelihood that “T" > Tyjarm — shutoff” is between 0.99 and 0.9999,
depending on how independent the sensor errors are. If the shutoff condition
(premise 3) is switched from OR to AND, the likelihood of shutoff becomes be-
tween 0.98 and 0.99, depending on sensor independence. Logical tasks for this
scenario include 1) working forward through the implication to determine the
likelihood of triggering a shutdown (deduction), 2) determining the likelihood of
different hypothesized scenarios in the event of a shutdown (abduction), and 3)
fitting unknown probabilities to data (induction). Tools for probabilistic logic
include ProbLog (which extends the Prolog logic programming language) (87)
and Markov Logic Networks (88)).

2.4.2 Causal reasoning
A special case of probabilistic reasoning is causal reasoning, the study of

cause and effect (89; [90; [OT). This uses elements of probabilistic forms of induc-
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tion, deduction, and abduction (applying these to causes and effects), and also
includes counter-factual reasoning (“What If?” scenarios) and interventions.

Causal reasoning is especially prominent in the biomedical field and in epi-
demiology (92)), where statements like “smoking causes cancer” need to be eval-
uated. Consider one patient, Sam, who smokes. Induction would be inferring
a rule, “smoking causes cancer,” from statistical data about patients over time.
Deduction would be following a causal chain of events to determine the likeli-
hood of Sam getting cancer as an effect of their behavior. Abduction would be
explaining an observed effect (Sam gets cancer) by hypothesizing the causes of
that effect and showing the effect can be deduced from those causes. Counter-
factual reasoning would be evaluating the predictions of a causal model when
Sam does not smoke (“What if Sam hadn’t smoked?”).

Methods for modeling causal reasoning include structural equation modeling
(93), Bayesian causal networks (94), and directed acyclic graphs (89)). Causal
modeling has contributed to fault detection and diagnosis in chemical processes
(95} 90), as well as in drug discovery (97]).

3 Informal reasoning

For our purposes, informal reasoning describes step-by-step thinking pro-
cesses that are not explicitly expressed in formal terms. These can include
spatial and temporal reasoning, analogical reasoning, dialectic reasoning, com-
monsense reasoning, and moral reasoninﬂ While we won’t discuss all of the
forms of informal reasoning, we describe a case study in reasoning in uncertainty
and describe analogical reasoning in more detail. Then, we move to the most
informal realm of all — that of natural language, where large language models
(LLMs) are demonstrating informal reasoning capabilities.

3.1 Reasoning about underspecified problems

Informal reasoning enables problem solving in diverse contexts and in the
presence of uncertainty and ambiguity. This is especially critical in the real
world. Consider the difference between the operation of a chemical plant in
process simulation software vs. in the real world. A catalytic reactor in a process
simulation might be modeled by a neat set of equations based on ODEs. A
real-world reactor has dozens of additional complexities, including feed streams
with trace impurities that may accumulate on the catalyst; catalyst variation
across the reactor bed, over time on stream, and between manufacturer batches;
reactor walls that may corrode over time; perturbations from an ideal cylinder
due to inlet and outlet and sensor ports. Reasoning about the complex system
requires qualitatively different skills than solving the ODEs.

Scientists and engineers need to reason informally when facing underspecified
problems. Ask a student of thermodynamics, “What happens to a gas when it

8Since the 80’s, researchers have tried to formalize these, with the Cyc project for com-
monsense reasoning being one of the most prominent.
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is compressed by a piston?” and they may answer, “The pressure will increase,
and maybe it’ll get hotter, depending on whether it can exchange heat with
the surroundings.” Conclusions emerge despite details being absent from the
question (How much is the gas compressed? Is the gas real or ideal? What
about phase changes?). They make be starting from an ideal gas as a base
case, then thinking about Boyle’s Law, where pressure and volume are inversely
proportional (P o« 1/V when T is constant), then recognizing that we don’t
know whether T is constant, so there could be multiple answers worth exploring.
Furthermore, in the case of Boyle’s Law, the notion of “inversely proportional
to” is hard to express mathematically; in formal logic, it is 3k, P = k/V — there
exists some constant k such that P = k/V (36). Students don’t go through this
route, because reasoning more loosely is easier, and is usually sufficient.

Adding details about the gas properties, heat transfer, and initial/final con-
ditions can shift this problem into a formal one (perhaps of the plug-and-chug
variety, i.e. Fig. ) But such a formulation doesn’t test the student’s ability
to think at a more abstract level, which is required for more general problem-
solving, as most real-world problems don’t come fully-specified. In our view,
a significant purpose of chemical education is to develop and refine “chemical
intuition” (learned heuristics, both explicit and implicit) that enable chemists
and chemical engineers to reason through underspecified problems (98)), using
both System 1 and System 2 reasoning patterns (27)).

3.2 Reasoning with analogy

One important informal reasoning pattern is analogy. These play a role in the
major paradigms in chemistry, such as the greenhouse effect in climate change,
the lock and key in enzyme catalysis, and planetary orbits in the Bohr model
of the atom relate scientific concepts to everyday ideas. Analogy also plays an
important role in everyday problem solving: one can use an analogy between
a novel polyfluorinated alkyl substance (PFAS) and a well-characterized one,
like polyfluorinated octanoic acid (PFOA), and thus estimate the properties of
the novel one. Or consider halogen chemistry — the concept “halogen” is an
abstraction that places fluorine, chlorine, and bromine into the same category.
This allows one to predict the properties of NaBr by way of analogy to the prop-
erties of NaCl, and predict the reaction products of an acyl bromide following
an observation of the products of an acyl chloride.

Analogical reasoning relates something in a familiar source domain to some-
thing in a less familiar target domain. Formally, it is a form of inductive rea-
soning, “If X and Y share properties a, b, and ¢, they may also share property
d” (99). But in practice, people don’t usually articulate their reasoning in this
way; analogies are developed informally. Atoms and the solar system each have
many properties, after all — details such as “a, b, and ¢ are the most relevant
properties for grounding the comparison (and why)” are rarely written down.
This has made computational implementations of analogical reasoning difficult,
though progress has been made in developing computational analogical reason-
ing (100; [99)).
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_ THE GREAT WAVE OVER.

Figure 9: Analogies in catalytic resonance theory. a) In static catalysis,
molecules “fall down” a free energy gradient, akin to downhill skiers, while
b) in dynamic catalysis, molecules are promoted by a local free energy gradient,
akin to surfers riding ocean waves. ¢) At the right frequency, a hummingbird’s
wings can appear static to the human eye; similarly, the coverage and rate of
a catalytic surface appears statics near the resonance frequency. Image credits:
a) The House Staff, b) From (103]), reused with permission, c¢) Charles J. Sharp.

Nonetheless, analogies play a important role in education, as well as in sci-
entific discovery. Kepler leaned on an analogy between light and the vis motriz
(a precursor to gravity) to inspire his model of the solar system (101]). Ruther-
ford developed an analogy between planetary orbits and electrons orbiting the
nucleus, which helped Bohr develop his eponymous model of the atom (102)).
To pick just one contemporary example, the development of catalytic resonance
theory, a new paradigm in catalysis (103)), leaned on many analogies through its
conception. Sabatier first suggested that a catalyst shouldn’t bind too strongly
or too weakly (I04); Balandin demonstrated this experimentally and first de-
scribed “volcano-shaped” data (105), hence the ubiquitous “volcano plots” in
heterogeneous catalysis (I06). Ardagh, Abdelrahman, and Dauenhauer imag-
ined an “inverted volcano” when conceiving catalytic resonance theory, and later
developed more analogies when refining details, including a hummingbird flap-
ping its wings, a band pass filter in electronics, and downhill skiing vs. surfing
(Fig. PP

Computational approaches for analogical reasoning are usually applied in
linguistics and natural language processing. In the chemical sciences, we know
of two papers that explore this, using the term “transduction” to distinguish
the approach from “induction” (I07; [I08). As we showed in Fig. [3] if x de-
scribes the material features (input) and y the a material properties (output),
then induction reasons about data to find a general rule (the model fit) that
is used to predict the property. Instead, transduction involves learning con-
trasts between input/output pairs in the training data. When a prediction is
being made (at test time) for an unknown molecule, the algorithm identifies the
input/output pair in the training set that is most similar to an input/output
pair that includes the unknown molecule. It then uses the learned contrast to

9Personal communication.
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Training data

A B
Analogical
reasoning
C
C d

Out-of-distribution test

b"l?
Figure 10: Analogical reasoning for molecular property prediction, adapted from
(I08). The property of an unknown, out of distribution molecule, is predicted

using an analogy (A : B :: C: D) between anchor molecules (on the left) and
target molecules (on the right).

compute the unknown property (108). Segal, et al. adopted a new, bilinear al-
gorithm for transduction (109)) that’s simple and efficient, though transduction
has previously been explored for quantitative structure/property relationships
(I07). Approaches that combine induction and transduction (I10) may prove
to be especially powerful, as they have shown promise on challenging analogical
reasoning tasks like the Abstraction and Reasoning Corpus (21)).

3.3 Large Language Models for Informal Reasoning

Human communication through natural language is much more variable, am-
biguous, and contextual than the executable code or precise logical statements
of formal languages. Historically, automating informal reasoning was generally
not possible; reasoning about real-world contexts required definitions of facts
and logical rules be first expressed in precise terms before a computer could
reason about them. However, large language models (LLMSs) operating on nat-
ural language have been breaking this paradigm. Furthermore, designing and
building LLMs to excel at reasoning tasks has led to large reasoning models
(LRMs), which are currently at the forefront of automated reasoning research.

LLMs are trained on a large corpus of text to generate the next word in a
sequence of text. Various post-training approaches align the models to produce
“desirable” responses, so they don’t strictly follow probabilities in the training
corpus (I11)). Fundamentally, these tools are learning (from the corpus during
training and from reward models in post-training) and predicting what word is
statistically likely to follow; they are thus not expected to be particularly ro-
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(a) Few-shot (b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A:

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X (Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are

blue. So there are 8/ 2 = 4 blue golf balls. The answer is 4. v/

(c) Zero-shot (d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are
there? there?
A: The answer (arabic numerals) is A: Let’s think step by step.
(Output) 8 X (Output) There are 16 balls in total. Half of the balls are golf

balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v

Figure 11: Example input and outputs of GPT-3 with different prompting
strategies. Taken from (114).

bust or rigorous for solving reasoning tasks (112)). Nonetheless, LLMs generate
answers when given questions! They can be given questions that require reason-
ing, and they can be (post)trained on text that includes informal and/or formal
reasoning patterns. Consequently, LLMs can be evaluated in their ability to
engage in reasoning, and their performance has been remarkable.

3.3.1 Chain of thought: emergent “reasoning” in LLMs

This has most thoroughly been studied in the realm of solving word problems
in math (T13]). Consider the examples in Fig.[11] from (I14)). Compare a prompt
to an LLM that gives an example problem and answer, along with an unsolved
problem. When the problem requires multistep reasoning, the LLM generates
incorrect answers; it isn’t capable of processing all the steps. Alternatively, if the
prompt illustrates a step-by-step reasoning process, the generated text follows
a similar step-by-step pattern of reasoning, before arriving at the answer (115)).
This prompting strategy dramatically improves LLMs’ final answers in reasoning
tasks. Shortly thereafter, researchers found that illustrating reasoning steps in
the prompt is not necessary to induce the step-by-step solution sequence; simply
including phrases like “Let’s think step by step” is sufficient (114]).

Such “chains of thought” form a neat bridge from “shallow” to “deep” prob-
lems (Fig. [I} as a singular algorithmic process (next-token prediction) can be
deployed in service of both). These have also revealed a certain generality about
reasoning, that some problems simply require more work to solve than others.
Multiplying 8345 x 2317 requires more computation steps than multiplying 25
x 18. A large magze is harder to navigate than a small maze. NMR structure
elucidation is harder for a complex molecule than for a simple one. These are
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all hallmarks of problems requiring System 2 thinking.

John Kitchin draws a helpful analogy between LLM text generation and nu-
merical solutions of ODEs (I16)): a system of ODEs can be integrated forward
one step at a time, each new point depending on the model and prior states;
an LLM propagates a string of tokens one at a time, each new token depending
on the model and the previous tokens in the context. To find “what value will
the ODEs arrive at after 1000 steps,” one must visit the intermediate states;
likewise, some questions to an LLM simply require generation of many interme-
diate tokens. A short chain of thought may be insufficient for solving a problem
that intrinsically requires many steps.

This has led to novel paradigm in machine learning: “test-time compute.”
LLMs are trained using massive amounts of compute (even billions of dollars);
the cost of running the LLM for an individual inference is a tiny fraction of
that. The question becomes, “should fewer computational resources be put into
training the LLM before its deployed, and more into generating its answers as
it reasons about specific prompts, and by how much?” (117). Smaller models
trained to generate more intermediate tokens at “test-time” can be more efficient
to build and deploy than larger models. Running these models as a user is
consequently more expensive (since they generate longer responses), but longer
responses are intrinsically needed for problems that require reasoning.

After observing this behavior in LLMs, researchers have found ways to op-
timize this. For instance, chains of thought can be generalized to “trees of
thought” (such as that shown in Fig. ), which more efficiently enable non-
linear reasoning chains (I18)). Furthermore, reinforcement learning during train-
ing can improve the quality of reasoning chains. This was first demonstrated by
models fine-tuned on data distinguishing good reasoning chains from bad (119).
Later developments showed such “process reward models” are unnecessary; only
question/answer pairs can be sufficient to optimize the models (120; 121]). Re-
cent approaches are also exploring ways to performing reasoning in latent space,
rather than generating discrete tokens for the reasoning chain (122]) (this leads
to capability improvements, but we lament the necessary loss of interpretabil-
ity). Aviary, from Future House, is a related approach leveraging reinforcement
learning-trained LLMs to excel in scientific tasks (123]).

Applying these strategies at scale has led to reasoning-optimized LLMs
(sometimes called LRMs, or large reasoning models), which include OpenAT’s
ol, 03, and 04; Google’s Gemini 2.0 Flash and 2.5 Flash; Anthropic’s Claude
and Opus; and DeepSeek’s R1 and V3 models (124). LRMs can be traditional
transformer-based LLMs that generate a linear sequences of tokens, whose pa-
rameters have been optimized for reasoning tasks. LRMs can also go further
than next-token prediction, and include some form of non-linear search process
for the best chain of tokens (like a tree of thoughts).

3.3.2 LLMs “reason” using learned vector programs

How are LLMs learning to reason? A helpful interpretation is that LLMs
learn vector programs during training, which are retrieved and executed when
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prompted by a user (125). When LLMs are trained on a large corpus of text,
they effectively perform data compression (like a blurry JPEG, but for para-
graphs (I26])) — learning patterns in the source text, storing them in the weights
of the model. Writing a prompt and using the LLM to generate the continua-
tion of the text is a manner of retrieving this data, similar to how an entry in
a database is retrieved by a query. Because the LLM transforms the training
data and the prompt into vectors of numbers, the “database” and the “query”
are no longer discrete, but continuous [T

But an LLM is even more than a continuous kind of lookup database for
facts, it stores programs, as well. Some LLM prompts can be seen of as providing
two things: 1) the “lookup key” for retrieving one of these programs, and 2)
the inputs on which to run the program. Chollet illustrates with “Rewrite
the following poem in the style of Shakespeare: ...my poem...” (125). In
this example, “Rewrite the following poem in the style of” is the key used to
retrieve a program, and “Shakespeare” and “...my poem...” are the program
inputs. The program itself is an inscrutable collection of vectors stored in the
LLM. LLMs consequently memorize millions of programs, which are stored in
a continuous latent space, enabling retrieval of programs in an interpolative
way. A prompt to an LLM points to one of these programs, which is “run”
on inputs provided in the prompt. Those training LLMs aim to improve the
reliability and generalizability of program learning, retrieval, and execution.
Perhaps adding “Let’s think step by step” is an effective prompting strategy
for the InstructGPT LLM (II4) because it points the LLM to a part of its
latent space that stores programs that generate chains of thought. Likewise,
perhaps the training strategies used by LRMs refine and improve the manner in
which “programs” are stored and/or retrieved by the LLMSE Researchers in
the “mechanistic interpretability” field (129), or Mechlnterp, are trying to frame
and answer questions like “What are the programs?”, “What are the variables?”,
“How do they propagate through the network during inference?”, “How are
they learned?”, and “Can these be controlled?” Systematically dissecting LLM
behavior is challenging and expensive, but some approaches have shown promise
at putting a “microscope” to LLM behavior (130).

3.3.3 Unreliable LLM reasoning

Nonetheless, LLMs (and LRMs) are far from a perfect solution to informal
reasoning, exhibiting unreliability in many dimensions.
Firstly, chain of thought may not help some forms of reasoning tasks, and

10This plays a role in the tendency of LLMs to “hallucinate,” or generate text whose form
is plausible, even convincing, but whose content is false. For example, many have observed
ChatGPT generate academic text with citations to works that don’t exist (127). Approaches
like Retrieval-Augmented Generation (RAG) can reduce hallucinations by connecting LLMs
directly to source texts, improving accuracy and traceability of information (128). But, ad-
dressing factual accuracy is fundamentally a different question from reasoning.

' While a useful interpretation, this is far from the whole story. After all, a prompt is
an undifferentiated string of tokens; there is no explicit distinction between the key and the
program inputs.
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may even hinder others. Sprague, et al. helpfully position informal reason-
ing tasks on a spectrum from symbolic to non-symbolic. Symbolic tasks are
described in natural language, but ultimately can be converted into a purely
symbolic problem describe in standard mathematical or logical terms. Non-
symbolic tasks cannot be thus converted; “Where on a river can you hold a
cup upright to catch water on a sunny day?” is such an example (from Com-
monsenseQA (I31))). Tasks can also be in between, or semi-symbolic, which
may describe most engineering problems — requiring non-symbolic reasoning
(such as commonsense intuition and expert judgement) to “set up a problem,”
and symbolic reasoning to solve the resulting math problem. Evaluating LLM
performance across diverse reasoning tasks shows that chain of thought helps
better on symbolic reasoning tasks, and less well on non-symbolic reasoning
tasks (132]).

Second, reasoning processes may not be generalizable. For instance, in the
grade school math questions in the popular GSM8k benchmark (I13]), changing
the names of characters or objects in a question, or perturbing numbers in
examples, caused variability in answers (133). LLMs are likewise not robust in
analogical reasoning tasks (I134). However, the latest LRMs appear to generalize
much better than their LLM counterparts.

Third, even when generated chains of thought lead to improvements in per-
formance, such chains might be plausible, but not faithful to rigorous reasoning
processes (135} 136} [[37 (138}, [139; 140} 14T} 142} [143]). For example, DeepSeek’s
initial reasoning model output hard-to-interpret, multilingual chains of thought,
but this was alleviated by adjusting training to produce monolingual chains of
thought (I2I)). Stechly and Valmeekam, et al. systematically studied chains of
thought in a domain of planning/search problems (I41). This domain allowed
them to not just check whether answers are correct, but also evaluate whether
the generated intermediate reasoning traces are valid. Training on correct rea-
soning traces improved LLMs performance, but LLMs still generated invalid
traces that led to correct answers. Training on corrupted reasoning traces also
improved LLM performance on generating correct solutions, and by a compa-
rable amount. The authors interpret this through the lens of semantics: the
intermediate tokens are certainly useful for the LLM to arrive at the correct
solution (consider again the above analogy with ODESs), but their meaning is
ultimately inconsistent with the semantics that the verifier (and the humans)
are expecting. They suggest that “chains of thought” and “reasoning traces”
are inappropriate anthropomorphisms, and that “intermediate tokens” would
be a more appropriate term. In another recent paper testing LLMs and LRMs
solving puzzles (143)), internal reasoning traces were found to be unreliable, and
neither LLMs and LRMs could generalize to the problems that required the
most number of steps.

If LLMs are unreliable in reasoning, and perform best on symbolic reasoning
tasks, then why use LLMs for reasoning at all? After all, hard-coded algorithms
don’t exhibit this sort of brittleness; algorithms for sorting lists or multiplying
numbers don’t suddenly fail for large lists and large numbers. An alternative
would be to use an LLM to translate the informal reasoning task into a formal
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problem, use a symbolic solver to rigorously execute the reasoning, then use
the LLM to translate the result back into informal language (I44). If a word
problem requires multiplication of 8-digit numbers, instead of relying on an un-
reliable LLM for the multiplication, task the LLM to prepare an input to a
calculator, which can rigorously execute the reasoning steps. This strategy may
be especially relevant for reasoning problems akin to Fig. [Ik, where “program
execution” can be delegated to something reliable (and is indeed part of many
commercial AI systems that support Python function execution). However,
problems which require interleaving between informal and formal /symbolic rea-
soning steps would require multiple calls to reasoning tools; for simple reasoning
steps (e.g. 1 < 2) tool use might be overly tedious, and LLM’s native reasoning
skills might be sufficiently reliable. For more complex problems, LLMs can be
integrated with solvers in nonlinear ways to combine the solvers’ rigorous rea-

soning with the creativity and knowledge retrieval capabilities of LLMs (145).
In other cases, the LLM may generate rea-

soning chains in the form of formal code, like
Problem Lean (16; AT; 146; 147), whose validity can
be trusted after validation with an external

verifier. Fig. [[2]illustrates how this leverages
LLM the creativity of the LLM and the rigor of

the theorem prover. When Lean accepts or

‘ rejects an LLM-generated proof to a prob-
2 lem, it can provide feedback for improving
Proof? v Feedback the LLM’s performance, either via training
or in-context learning. In such a framework,

Lean an LLM can generate thousands of incorrect
proofs and one correct proof, and Lean will

verify beyond doubt which is correct.

Fig. is by no means the only work-
Proof! & flow studied; variations include different ways

of training on Lean proof libraries and feed-

back from the Lean compiler (16} 41]), as well
Figure 12: Workflow illustrat- g multi-step workflows, such as drafting a
ing how LLM-generated proofs proof strategy in natural language, sketching
can be verified with Lean. a multi-step proof in Lean, then proving the
steps one at a time (I48). DeepMind’s Al-

phaProof system (18], which achieved a silver medal in the 2024 International
Math Olympiad (IMO), used reinforcement learning to train an LLM to solve
hundreds of millions of synthetic Lean proofs. Then, as the LLM attempted
to solve a very hard problem, the problem synthesizer created variants of that
problem, which were used to fine-tune the LLM at test time. As simpler vari-
ants were solved, and the LLM’s weights updated, the LLM learned how to
tackle the hard problem (the fine-tuning being discarded each time a new hard
problem is attempted). “Neural theorem proving” is an active area of research
in pure mathematics, which will likely benefit the sciences and engineering, as
formal methods makes an impact there. Nonetheless, for the 2025 IMO compe-
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tition, DeepMind’s Al wrote its proofs in natural language, without Lean, and
achieved a Gold medal (149).

4 Discussion

4.1 Being and doing

While we’ve organized these approaches into formal and informal categories,
we can alternatively position them in two paradigms: propositional vs. proce-
dural, “what” vs. “how”, thermodynamics vs. kinetics. 77 x 77 = 5929 is a
proposition that is true or false, and this logical view does not depend on how
the truth value is obtained. Executing a multiplication algorithm, whether by
hand, with a calculator, or via a “program” learned by a neural network, is
principally about the step-by-step procedureE Furthermore, in Section
we illustrate how a density functional theory program (indeed, any piece of sci-
entific computing software) is a computable instantiation of a scientific theory;
the theory is the “what” and the code is the “how.” These perspectives inter-
sect, as algorithms are ultimately employed to solve formal logic problems, and
the computational complexity of an algorithm is itself subject to math proofs.
Nonetheless, the scientist and engineer can benefit from keeping both of these
in mind, and take care not to neglect the propositional perspective (and all the
formal methods tools we have available) as chain-of-thought reasoning by LLMs
grows ever more popular.

Which perspective is more fruitful may depend on the application. Algo-
rithm execution may play an important role in developing next generation ma-
chine learning approaches that generalize in ways that current tools cannot.
Representing chemistry knowledge using formal logic can help us make progress
in simply thinking more precisely about familiar concepts (when such precision
is possible), as well as enable rigorous verification of scientific derivations (36])
and bug-free software for scientific computing (I50). Planning can be seen as
both algorithmic as well as formal, when one needs to construct and test plans
alongside proofs to verify their properties.

Consider how these paradigms play out in the abductive reasoning task
of NMR structure elucidation (see Section . The “procedural” paradigm
positions this as a human or LLM undergoing a non-linear process of forming,
evaluating, revising, and validating structural hypotheses. The “propositional”
paradigm begins with a space of hypotheses that exists for this problem class,
and is organized and/or navigated by humans and LLM agents in different ways
(see Section . In other words, to study the “thermodynamics” of the task
is to characterize the underlying hypothesis space (e.g. “What kinds of wrong
answers are ‘nearest’ to the right answer?” (I51))); to study the “kinetics” is to
observe how different reasoners navigate that space (e.g. LLMs using chain of
thought (I52)) and LLMs in structured workflows (I53)).

12The functional vs. imperative programming paradigms (Lean 4 vs. Python), illustrate
this dichotomy, as well.
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Figure 13: Syntax and semantics in scientific computing. In the realm of pure
math, correct syntax isolates all logically valid statements. Semantics is re-
quires to connect mathematics to the real world, in three bridges: from valid
mathematics to meaningful scientific models, from these to computable models
for scientific software, and once again when outputs of software are compared
to experimental measurements. Image from Lecture 3, Lean for Scientists and
Engineers, 2024 (42]).

Pure math

4.2 Syntax and semantics

In formal logic, syntax refers not just to whether a sentence is grammatically
correct (the linguistic and programming senses of syntax), but also to whether it
is logically valid (if the premises are true, then the conclusion is true). Semantics
are about how such sentences connect to the real world (Fig. . Reasoning in
mathematics is grounded in symbolic logic, where syntax is (nearly) everything,
and connection to the real world is secondary. But for science in general, and
for the chemical sciences in particular, semantics are essential. Let us compare
and contrast repositories of “knowledge” in chemistry and in mathematics.

Stores of chemical knowledge, from the periodic table of the elements, to the
NIST Chemistry Webbook (I54) and ChemBL (I55), are exercises in semantics.
However, these are essentially structured databases, designed for facilitating in-
formation storage and retrieval, but not reasoning about their contents. Knowl-
edge graphs, like Wikidata (I56]), are designed to facilitate reasoning about
knowledge at scale, and can support deduction, induction, and abduction (I57).
Wikidata is a neat resource for encyclopedic knowledge; purpose-built knowl-
edge graphs for materials science (I58) and chemistry (I59) applications have
also been explored. For example, link prediction in a knowledge graph is a fun-
damentally logical task; when reactants, catalysts, and products comprise the
knowledge graph, link prediction discovers missing reactions (160).

In contrast, the “data” involved in defining pure mathematics (for example,
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Lean’s math library Mathlib) is predominantly concepts defined and proofs es-
tablishing relationships among them. As of this writing, Mathlib has >110,000
definitions and >220,000 theorems expressed in just under 2 million lines of code.
This comprises most of undergraduate mathematics, as well as much graduate
material — it’s dense, formally-verified, and far more intricate than any knowl-
edge graph. Knowledge graphs just aren’t expressive enough. Mathematics in
Wikidata is semi-formal (I61) and only somewhat computable (162)).

Thus, ChemBL and Mathlib illustrate fundamental differences in how they
approach syntax and semantics. ChemBL’s >1.7 million assays are digital en-
tires of real-world experiments — semantics is the purpose. Syntax is mostly
relevant for harmonizing, structuring, and querying via controlled vocabulary —
“formalizing” the data into a database. In Mathlib, syntax features far more
prominently — it drives the precision of the library and is the basis of its logical
verification. Semantics aren’t absent; they show up in names of objects and in
the human choices behind what belongs in the library and how the hierarchy of
concepts is built. Mathematics isn’t connected to the “real world” like chem-
istry is, but it is semantically grounded in human understanding of mathematics.
For instance, renaming Prime to Rose throughout Mathlib wouldn’t break the
proofs, but it would distance the definition from the human understanding of
primality.

At least three implications follow: First, the content of such libraries simply
cannot be verified with as much confidence as Mathlib can be, because they
primarily serve semantics, not syntax. A typo in the periodic table is a semantic
error; Lean’s type-checking rules out syntax errors. Second, scientific knowledge
is not static; we will likely revise the atomic mass of ruthenium in the next
century, at least some minor refinement. Updating knowledge in science is
the norm; in mathematics, what is established is rarely overturned. Third,
solving chemical problems really does require a great degree of memorization
/ retrieval. Statistical machine learning methods have made so much headway
over the years, precisely because these effectively navigate these quantities of
data. Yet, chemical knowledge is highly structured and often tied to theory;
reasoning ¢s important for navigating this structure.

4.3 Abstraction

Perhaps the most central, yet most mysterious, principle in reasoning is that
of abstraction. Abstraction is forming categories that unite different entities ac-
cording to what they share in common. In informal reasoning, it enables both
analogical reasoning as well as reasoning about underspecified problems. This is
the principal activity of analogical reasoning — obviously, a pair or molecules, or
an enzyme/drug and a lock/key are different, but at some abstract level, they
share enough in common for the analogy to be useful. Solving underspecified
problems is impossible when the solution method requires specification of un-
known details; by thinking about a problem at a higher, more abstract level, the
unknown details can be set aside to focus on higher-level ideas. Scientists and
engineers structure our knowledge and understanding with layers upon layers

31

https://doi.org/10.26434/chemrxiv-2025-q9bb1 ORCID: https://orcid.org/0000-0002-0100-0227 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2025-q9bb1
https://orcid.org/0000-0002-0100-0227
https://creativecommons.org/licenses/by/4.0/

Man X
N Queen \
\
\ \
\ \
\ \

\
“royalty” —" /" ~_“gender”

vector vector
King

Woman
\ / Girl?
\
N
\
/ ‘. Boy
\\ \\
\
N
\

q

Prince?

Figure 14: Learned “abstractions” in Word2vec, as similarity vectors between
words. After learning “gender” and “royalty” vectors from man, woman, king,
and queen, the location of “girl” can be predicted from that for “boy.”

of abstractions; cognitive scientists have found that this ability to grasp “deep
structure” is what makes experts superior to novices in solving physics prob-
lems (163). “Unit operation” is the abstraction that made chemical engineering
possible; “functional group” is the basis of organic chemistry.

Abstraction plays out more concretely in formal reasoning: a theorem prover’s
math library doesn’t need 5 versions of (a + b) + ¢ = a + (b + ¢) for Natural,
Integer, Rational, Real, and Complex numbers. Instead, the mathematicians
identify the most abstract type that subsumes the others (in this case, a semi-
group), prove it for this most general case, and get the proofs for all the special
cases automatically. Abstraction is in the very name of this field of study: ab-
stract algebra. Authors of math libraries use abstraction abundantly, because
it’s necessary for complexity, efficiency, compactness, and scale.

Algorithms solve problems about abstract entities represented in the com-
puter — this is the very mechanism by which computational researchers apply
their skills in diverse domains. Genetic algorithms may be inspired by biology,
but they find applications far beyond as a platform for gradient-free optimiza-
tion. A materials scientist applying genetic algorithms to discover new metal-
organic frameworks (MOFSs) thinks about both MOFs and genetic algorithms
at a more abstract level, and identifies the concepts about MOFs which map
to “genes,” “populations,” and “fitness” in order to craft an appropriate imple-
mentation of the algorithm (164} 165). “Gradient-free optimization” is itself a
more abstract category of algorithm, that includes particle swarm optimization
(inspired by analogy to flocks of birds and schools of fish) (166) and simulated
annealing (inspired by analogy to metallurgy) (I67]).

In each of these cases, humans are engaging in the effort of creating, iden-
tifying, adapting, and deploying abstractions. They may include computers in
many steps of the process (e.g. executing a genetic algorithm or verifying a math
library), but the computers are not practicing the art of abstraction themselves.
However, this may be emerging, at least to some extent, in LLMs.
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The core challenge of this is answering the questions “Can a computer learn
an abstraction (on its own)?” and “How can we test this?” Some have pro-
posed that language models discovering similarities among words is a form of
learning abstractions. The first of these, Word2vec, assigns a vector of numbers
to each word according to the statistics of their proximity to other words in
text (168). With words represented as vectors, properties such as distance and
direction between pairs of words can be calculated (Fig. . Curiously, the
vector between “man” and “woman” ends up being rather parallel to the vec-
tor between “king” and “queen”; the vectors between these can be interpreted
as encoding the concepts of “gender” and “royalty.” Thus, “word arithmetic”
becomes possible, enabling the location of “boy” to be predicted by adding
this vector to the position of “girl.” When applied to a database of mate-
rials science abstracts, Word2vec finds associations among concepts in chem-
istry and materials science (169), with “word arithmetic” examples such as
(ferromagnetic — NiFe) 4+ IrMn = anti ferromagnetic.

Linear relationships are quite inadequate for describing complex subjects.
Rogers, Drozd, and Li nicely review the limitations of these “word analo-
gies” (99) — for instance, they point out that a vector offset could theoreti-

9. 6

cally solve the question “blood”:“red” :: “snow”:“white”, but for the question
“snow”: “white” :: “sugar”:“white”, the correct answer is a priori excluded,
since the vectors are necessarily not parallel. Large language models learn non-
linear relationships among words, and models like GPT-3 and GPT-4 have
shown strong performance on some benchmarks for solving abstract reasoning
problems that rely on analogies (I70). However, properly evaluating whether
systems are capable of learning abstract relationships isn’t so simple — after all,
they may learn shortcuts instead of rigorous reasoning, and still perform well on
benchmarks. Subsequent work found LLM performance on these problems is not
robust; making a small perturbation to a question, like modifying the alphabet,
degrades LLM performance significantly while not affecting human performance
(I34). This suggests that the problem-solving techniques learned by LLMs from
their training data are not generalizable in the way human problem-solving is.
Novel approaches designed for learning and reasoning on-the-fly (I71)) are show-
ing promise for tackling previously recalcitrant benchmarks (21]). These may
point the way to Al systems that can develop novel abstractions, but until
then, computers will only deal in the abstractions that humans found first.

5 Conclusions

While statistical machine learning approaches are powerful techniques for
“shallow” aspects of science and engineering problems, humans address the
“depth” of these problems with a wide range of reasoning techniques. Sev-
eral computational approaches for reasoning have been highlighted here, with
most of our emphasis on deductive reasoning with formal logic and chain-of-
thought “reasoning” with LLMs. Traditional, simulation-based scientific com-
puting approaches are a form of deduction (albeit a narrow, specialized one),

33

https://doi.org/10.26434/chemrxiv-2025-q9bb1 ORCID: https://orcid.org/0000-0002-0100-0227 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2025-q9bb1
https://orcid.org/0000-0002-0100-0227
https://creativecommons.org/licenses/by/4.0/

while supervised learning-based approaches combine narrow forms of induction
and deduction. Abductive and analogical reasoning feature prominently in hu-
man scientific reasoning, but are less common in computational settings, and
are exciting subjects for future work. Applications of reasoning are as varied
as topics in science and engineering, from verified bug-free software for scien-
tific computing, to out-of-distribution predictive modeling, to inverse design and
automated scientific discovery. Integrating symbolic and neural reasoning ap-
proaches could leverage advantages of each, with the creativity of generative Al
reigned in by verification with symbolic Al.
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