scilib documentation

LeanChemicalTheories / adsorption.BETInfinite

BET #

This section defines the Brunauer–Emmett–Teller (BET) adsorption theory where we relax the assumption of the Langmuir model that restricts adsorption on a single site to be one molecule; instead, molecules can stack on top of each other in layers.

Definitions #

structure BET.system  :
Type
Instances for BET.system
  • BET.system.has_sizeof_inst
noncomputable def BET.adsorption_constant (S : BET.system) :
Equations
noncomputable def BET.seq (S : BET.system) (P : ) :
Equations
noncomputable def BET.volume_adsorbed (S : BET.system) (V₀ P : ) :
Equations
noncomputable def BET.catalyst_area (S : BET.system) (P : ) :
Equations

Proof #

theorem BET.regression_form {P V₀ : } (S : BET.system) (hx1 : BET.n_layer_adsorption_rate S P < 1) (hx2 : 0 < BET.n_layer_adsorption_rate S P) (hθ : 0 < S.s₀) (hP : 0 < P) :
let a : := V₀ * S.C_1, b : := S.C_L, c : := S.C_1, q : := BET.volume_adsorbed S V₀ P / BET.catalyst_area S P in q = a * P / ((1 - b * P) * (1 - b * P + c * P))
theorem BET.brunauer_26_from_seq {P V₀ : } {S : BET.system} (hx1 : BET.n_layer_adsorption_rate S P < 1) (hx2 : 0 < BET.n_layer_adsorption_rate S P) (hP : 0 < P) :
noncomputable def BET.brunauer_28 (S : BET.system) (P : ) :
Equations
theorem BET.brunauer_28_from_seq {P V₀ : } (S : BET.system) (h27 : S.P₀ = 1 / S.C_L) (hx1 : BET.n_layer_adsorption_rate S P < 1) (hx2 : 0 < BET.n_layer_adsorption_rate S P) (hP : 0 < P) :