BET #
This section defines the Brunauer–Emmett–Teller (BET) adsorption theory where we relax the assumption of the Langmuir model that restricts adsorption on a single site to be one molecule; instead, molecules can stack on top of each other in layers.
Definitions #
Equations
- BET.first_layer_adsoprtion_rate S P = S.C_1 * P
Equations
- BET.n_layer_adsorption_rate S P = S.C_L * P
Equations
- BET.adsorption_constant S = S.C_1 / S.C_L
Proof #
theorem
BET.sequence_math
{S : BET.system}
{P : ℝ}
(hx1 : BET.n_layer_adsorption_rate S P < 1)
(hx2 : 0 < BET.n_layer_adsorption_rate S P) :
(∑' (k : ℕ), (↑k + 1) * BET.seq S P (k + 1)) / (S.s₀ + ∑' (k : ℕ), BET.seq S P (k + 1)) = BET.adsorption_constant S * BET.n_layer_adsorption_rate S P / ((1 - BET.n_layer_adsorption_rate S P) * (1 - BET.n_layer_adsorption_rate S P + BET.n_layer_adsorption_rate S P * BET.adsorption_constant S))
theorem
BET.regression_form
{P V₀ : ℝ}
(S : BET.system)
(hx1 : BET.n_layer_adsorption_rate S P < 1)
(hx2 : 0 < BET.n_layer_adsorption_rate S P)
(hθ : 0 < S.s₀)
(hP : 0 < P) :
Equations
- BET.brunauer_26 S = λ (P : ℝ), BET.adsorption_constant S * BET.n_layer_adsorption_rate S P / ((1 - BET.n_layer_adsorption_rate S P) * (1 - BET.n_layer_adsorption_rate S P + BET.adsorption_constant S * BET.n_layer_adsorption_rate S P))
theorem
BET.brunauer_26_from_seq
{P V₀ : ℝ}
{S : BET.system}
(hx1 : BET.n_layer_adsorption_rate S P < 1)
(hx2 : 0 < BET.n_layer_adsorption_rate S P)
(hP : 0 < P) :
BET.volume_adsorbed S V₀ P / BET.catalyst_area S P = V₀ * BET.brunauer_26 S P
theorem
BET.tendsto_at_top_at_inv_CL
(S : BET.system) :
filter.tendsto (BET.brunauer_26 S) (nhds_within (1 / S.C_L) (set.Ioo 0 (1 / S.C_L))) filter.at_top
theorem
BET.tendsto_at_bot_at_inv_CL
(S : BET.system)
(hCL : S.C_1 < S.C_L) :
filter.tendsto (BET.brunauer_26 S) (nhds_within (1 / S.C_L) (set.Ioo (1 / S.C_L) (1 / (S.C_L - S.C_1)))) filter.at_bot
theorem
BET.tendsto_at_bot_at_inv_CL'
(S : BET.system)
(hCL : S.C_L ≤ S.C_1) :
filter.tendsto (BET.brunauer_26 S) (nhds_within (1 / S.C_L) (set.Ioi (1 / S.C_L))) filter.at_bot
Equations
- BET.brunauer_28 S = λ (P : ℝ), BET.adsorption_constant S * P / ((S.P₀ - P) * (1 + (BET.adsorption_constant S - 1) * (P / S.P₀)))
theorem
BET.brunauer_28_from_seq
{P V₀ : ℝ}
(S : BET.system)
(h27 : S.P₀ = 1 / S.C_L)
(hx1 : BET.n_layer_adsorption_rate S P < 1)
(hx2 : 0 < BET.n_layer_adsorption_rate S P)
(hP : 0 < P) :
BET.volume_adsorbed S V₀ P / BET.catalyst_area S P = V₀ * BET.brunauer_28 S P