Big operators for nat_antidiagonal #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains theorems relevant to big operators over finset.nat.antidiagonal.
    
theorem
finset.nat.sum_antidiagonal_swap
    {M : Type u_1}
    [add_comm_monoid M]
    {n : ℕ}
    {f : ℕ × ℕ → M} :
    
theorem
finset.nat.prod_antidiagonal_eq_prod_range_succ_mk
    {M : Type u_1}
    [comm_monoid M]
    (f : ℕ × ℕ → M)
    (n : ℕ) :
    
theorem
finset.nat.sum_antidiagonal_eq_sum_range_succ_mk
    {M : Type u_1}
    [add_comm_monoid M]
    (f : ℕ × ℕ → M)
    (n : ℕ) :
    
theorem
finset.nat.sum_antidiagonal_eq_sum_range_succ
    {M : Type u_1}
    [add_comm_monoid M]
    (f : ℕ → ℕ → M)
    (n : ℕ) :
This lemma matches more generally than
finset.nat.sum_antidiagonal_eq_sum_range_succ_mk when using rw ←.
    
theorem
finset.nat.prod_antidiagonal_eq_prod_range_succ
    {M : Type u_1}
    [comm_monoid M]
    (f : ℕ → ℕ → M)
    (n : ℕ) :
This lemma matches more generally than finset.nat.prod_antidiagonal_eq_prod_range_succ_mk when
using rw ←.