Lemmas about division (semi)rings and (semi)fields #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
theorem
add_div_eq_mul_add_div
{α : Type u_1}
[division_semiring α]
{c : α}
(a b : α)
(hc : c ≠ 0) :
@[simp]
@[simp]
See inv_sub_inv
for the more convenient version when K
is commutative.
@[protected, instance]
@[protected]
theorem
ring_hom.injective
{α : Type u_1}
{β : Type u_2}
[division_ring α]
[semiring β]
[nontrivial β]
(f : α →+* β) :
noncomputable
def
division_ring_of_is_unit_or_eq_zero
{R : Type u_4}
[nontrivial R]
[hR : ring R]
(h : ∀ (a : R), is_unit a ∨ a = 0) :
Constructs a division_ring
structure on a ring
consisting only of units and 0.
Equations
- division_ring_of_is_unit_or_eq_zero h = {add := ring.add hR, add_assoc := _, zero := group_with_zero.zero (group_with_zero_of_is_unit_or_eq_zero h), zero_add := _, add_zero := _, nsmul := ring.nsmul hR, nsmul_zero' := _, nsmul_succ' := _, neg := ring.neg hR, sub := ring.sub hR, sub_eq_add_neg := _, zsmul := ring.zsmul hR, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, int_cast := ring.int_cast hR, nat_cast := ring.nat_cast hR, one := group_with_zero.one (group_with_zero_of_is_unit_or_eq_zero h), nat_cast_zero := _, nat_cast_succ := _, int_cast_of_nat := _, int_cast_neg_succ_of_nat := _, mul := group_with_zero.mul (group_with_zero_of_is_unit_or_eq_zero h), mul_assoc := _, one_mul := _, mul_one := _, npow := group_with_zero.npow (group_with_zero_of_is_unit_or_eq_zero h), npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, inv := group_with_zero.inv (group_with_zero_of_is_unit_or_eq_zero h), div := group_with_zero.div (group_with_zero_of_is_unit_or_eq_zero h), div_eq_mul_inv := _, zpow := group_with_zero.zpow (group_with_zero_of_is_unit_or_eq_zero h), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, rat_cast := rat.cast_rec (div_inv_monoid.to_has_inv R), mul_inv_cancel := _, inv_zero := _, rat_cast_mk := _, qsmul := qsmul_rec rat.cast_rec (distrib.to_has_mul R), qsmul_eq_mul' := _}
@[reducible]
noncomputable
def
field_of_is_unit_or_eq_zero
{R : Type u_4}
[nontrivial R]
[hR : comm_ring R]
(h : ∀ (a : R), is_unit a ∨ a = 0) :
field R
Constructs a field
structure on a comm_ring
consisting only of units and 0.
See note [reducible non-instances].
Equations
- field_of_is_unit_or_eq_zero h = {add := comm_ring.add hR, add_assoc := _, zero := group_with_zero.zero (group_with_zero_of_is_unit_or_eq_zero h), zero_add := _, add_zero := _, nsmul := comm_ring.nsmul hR, nsmul_zero' := _, nsmul_succ' := _, neg := comm_ring.neg hR, sub := comm_ring.sub hR, sub_eq_add_neg := _, zsmul := comm_ring.zsmul hR, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, int_cast := comm_ring.int_cast hR, nat_cast := comm_ring.nat_cast hR, one := group_with_zero.one (group_with_zero_of_is_unit_or_eq_zero h), nat_cast_zero := _, nat_cast_succ := _, int_cast_of_nat := _, int_cast_neg_succ_of_nat := _, mul := group_with_zero.mul (group_with_zero_of_is_unit_or_eq_zero h), mul_assoc := _, one_mul := _, mul_one := _, npow := group_with_zero.npow (group_with_zero_of_is_unit_or_eq_zero h), npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, mul_comm := _, inv := group_with_zero.inv (group_with_zero_of_is_unit_or_eq_zero h), div := group_with_zero.div (group_with_zero_of_is_unit_or_eq_zero h), div_eq_mul_inv := _, zpow := group_with_zero.zpow (group_with_zero_of_is_unit_or_eq_zero h), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, rat_cast := division_ring.rat_cast._default comm_ring.add comm_ring.add_assoc group_with_zero.zero comm_ring.zero_add comm_ring.add_zero comm_ring.nsmul comm_ring.nsmul_zero' comm_ring.nsmul_succ' comm_ring.neg comm_ring.sub comm_ring.sub_eq_add_neg comm_ring.zsmul comm_ring.zsmul_zero' comm_ring.zsmul_succ' comm_ring.zsmul_neg' comm_ring.add_left_neg comm_ring.add_comm comm_ring.int_cast comm_ring.nat_cast group_with_zero.one comm_ring.nat_cast_zero comm_ring.nat_cast_succ comm_ring.int_cast_of_nat comm_ring.int_cast_neg_succ_of_nat group_with_zero.mul _ _ _ group_with_zero.npow _ _ comm_ring.left_distrib comm_ring.right_distrib group_with_zero.inv group_with_zero.div _ group_with_zero.zpow _ _ _, mul_inv_cancel := _, inv_zero := _, rat_cast_mk := _, qsmul := division_ring.qsmul._default (… comm_ring.zsmul_zero' comm_ring.zsmul_succ' comm_ring.zsmul_neg' comm_ring.add_left_neg comm_ring.add_comm comm_ring.int_cast comm_ring.nat_cast group_with_zero.one comm_ring.nat_cast_zero comm_ring.nat_cast_succ comm_ring.int_cast_of_nat comm_ring.int_cast_neg_succ_of_nat group_with_zero.mul _ _ _ group_with_zero.npow _ _ comm_ring.left_distrib comm_ring.right_distrib group_with_zero.inv group_with_zero.div _ group_with_zero.zpow _ _ _) comm_ring.add comm_ring.add_assoc group_with_zero.zero comm_ring.zero_add comm_ring.add_zero comm_ring.nsmul comm_ring.nsmul_zero' comm_ring.nsmul_succ' comm_ring.neg comm_ring.sub comm_ring.sub_eq_add_neg comm_ring.zsmul comm_ring.zsmul_zero' comm_ring.zsmul_succ' comm_ring.zsmul_neg' comm_ring.add_left_neg comm_ring.add_comm comm_ring.int_cast comm_ring.nat_cast group_with_zero.one comm_ring.nat_cast_zero comm_ring.nat_cast_succ comm_ring.int_cast_of_nat comm_ring.int_cast_neg_succ_of_nat group_with_zero.mul _ _ _ group_with_zero.npow _ _ comm_ring.left_distrib comm_ring.right_distrib, qsmul_eq_mul' := _}
@[protected, reducible]
def
function.injective.division_semiring
{α : Type u_1}
{β : Type u_2}
[division_semiring β]
[has_zero α]
[has_mul α]
[has_add α]
[has_one α]
[has_inv α]
[has_div α]
[has_smul ℕ α]
[has_pow α ℕ]
[has_pow α ℤ]
[has_nat_cast α]
(f : α → β)
(hf : function.injective f)
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : α), f (x + y) = f x + f y)
(mul : ∀ (x y : α), f (x * y) = f x * f y)
(inv : ∀ (x : α), f x⁻¹ = (f x)⁻¹)
(div : ∀ (x y : α), f (x / y) = f x / f y)
(nsmul : ∀ (x : α) (n : ℕ), f (n • x) = n • f x)
(npow : ∀ (x : α) (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ (x : α) (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ (n : ℕ), f ↑n = ↑n) :
Pullback a division_semiring
along an injective function.
Equations
- function.injective.division_semiring f hf zero one add mul inv div nsmul npow zpow nat_cast = {add := semiring.add (function.injective.semiring f hf zero one add mul nsmul npow nat_cast), add_assoc := _, zero := group_with_zero.zero (function.injective.group_with_zero f hf zero one mul inv div npow zpow), zero_add := _, add_zero := _, nsmul := semiring.nsmul (function.injective.semiring f hf zero one add mul nsmul npow nat_cast), nsmul_zero' := _, nsmul_succ' := _, add_comm := _, mul := group_with_zero.mul (function.injective.group_with_zero f hf zero one mul inv div npow zpow), left_distrib := _, right_distrib := _, zero_mul := _, mul_zero := _, mul_assoc := _, one := group_with_zero.one (function.injective.group_with_zero f hf zero one mul inv div npow zpow), one_mul := _, mul_one := _, nat_cast := semiring.nat_cast (function.injective.semiring f hf zero one add mul nsmul npow nat_cast), nat_cast_zero := _, nat_cast_succ := _, npow := group_with_zero.npow (function.injective.group_with_zero f hf zero one mul inv div npow zpow), npow_zero' := _, npow_succ' := _, inv := group_with_zero.inv (function.injective.group_with_zero f hf zero one mul inv div npow zpow), div := group_with_zero.div (function.injective.group_with_zero f hf zero one mul inv div npow zpow), div_eq_mul_inv := _, zpow := group_with_zero.zpow (function.injective.group_with_zero f hf zero one mul inv div npow zpow), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, inv_zero := _, mul_inv_cancel := _}
@[protected, reducible]
def
function.injective.division_ring
{K : Type u_3}
[division_ring K]
{K' : Type u_1}
[has_zero K']
[has_one K']
[has_add K']
[has_mul K']
[has_neg K']
[has_sub K']
[has_inv K']
[has_div K']
[has_smul ℕ K']
[has_smul ℤ K']
[has_smul ℚ K']
[has_pow K' ℕ]
[has_pow K' ℤ]
[has_nat_cast K']
[has_int_cast K']
[has_rat_cast K']
(f : K' → K)
(hf : function.injective f)
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : K'), f (x + y) = f x + f y)
(mul : ∀ (x y : K'), f (x * y) = f x * f y)
(neg : ∀ (x : K'), f (-x) = -f x)
(sub : ∀ (x y : K'), f (x - y) = f x - f y)
(inv : ∀ (x : K'), f x⁻¹ = (f x)⁻¹)
(div : ∀ (x y : K'), f (x / y) = f x / f y)
(nsmul : ∀ (x : K') (n : ℕ), f (n • x) = n • f x)
(zsmul : ∀ (x : K') (n : ℤ), f (n • x) = n • f x)
(qsmul : ∀ (x : K') (n : ℚ), f (n • x) = n • f x)
(npow : ∀ (x : K') (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ (x : K') (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ (n : ℕ), f ↑n = ↑n)
(int_cast : ∀ (n : ℤ), f ↑n = ↑n)
(rat_cast : ∀ (n : ℚ), f ↑n = ↑n) :
Pullback a division_ring
along an injective function.
See note [reducible non-instances].
Equations
- function.injective.division_ring f hf zero one add mul neg sub inv div nsmul zsmul qsmul npow zpow nat_cast int_cast rat_cast = {add := ring.add (function.injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), add_assoc := _, zero := group_with_zero.zero (function.injective.group_with_zero f hf zero one mul inv div npow zpow), zero_add := _, add_zero := _, nsmul := ring.nsmul (function.injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), nsmul_zero' := _, nsmul_succ' := _, neg := ring.neg (function.injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), sub := ring.sub (function.injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), sub_eq_add_neg := _, zsmul := ring.zsmul (function.injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, int_cast := ring.int_cast (function.injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), nat_cast := ring.nat_cast (function.injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), one := group_with_zero.one (function.injective.group_with_zero f hf zero one mul inv div npow zpow), nat_cast_zero := _, nat_cast_succ := _, int_cast_of_nat := _, int_cast_neg_succ_of_nat := _, mul := group_with_zero.mul (function.injective.group_with_zero f hf zero one mul inv div npow zpow), mul_assoc := _, one_mul := _, mul_one := _, npow := group_with_zero.npow (function.injective.group_with_zero f hf zero one mul inv div npow zpow), npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, inv := group_with_zero.inv (function.injective.group_with_zero f hf zero one mul inv div npow zpow), div := group_with_zero.div (function.injective.group_with_zero f hf zero one mul inv div npow zpow), div_eq_mul_inv := _, zpow := group_with_zero.zpow (function.injective.group_with_zero f hf zero one mul inv div npow zpow), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, rat_cast := coe coe_to_lift, mul_inv_cancel := _, inv_zero := _, rat_cast_mk := _, qsmul := has_smul.smul _inst_12, qsmul_eq_mul' := _}
@[protected, reducible]
def
function.injective.semifield
{α : Type u_1}
{β : Type u_2}
[semifield β]
[has_zero α]
[has_mul α]
[has_add α]
[has_one α]
[has_inv α]
[has_div α]
[has_smul ℕ α]
[has_pow α ℕ]
[has_pow α ℤ]
[has_nat_cast α]
(f : α → β)
(hf : function.injective f)
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : α), f (x + y) = f x + f y)
(mul : ∀ (x y : α), f (x * y) = f x * f y)
(inv : ∀ (x : α), f x⁻¹ = (f x)⁻¹)
(div : ∀ (x y : α), f (x / y) = f x / f y)
(nsmul : ∀ (x : α) (n : ℕ), f (n • x) = n • f x)
(npow : ∀ (x : α) (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ (x : α) (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ (n : ℕ), f ↑n = ↑n) :
Pullback a field
along an injective function.
Equations
- function.injective.semifield f hf zero one add mul inv div nsmul npow zpow nat_cast = {add := comm_semiring.add (function.injective.comm_semiring f hf zero one add mul nsmul npow nat_cast), add_assoc := _, zero := comm_group_with_zero.zero (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), zero_add := _, add_zero := _, nsmul := comm_semiring.nsmul (function.injective.comm_semiring f hf zero one add mul nsmul npow nat_cast), nsmul_zero' := _, nsmul_succ' := _, add_comm := _, mul := comm_group_with_zero.mul (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), left_distrib := _, right_distrib := _, zero_mul := _, mul_zero := _, mul_assoc := _, one := comm_group_with_zero.one (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), one_mul := _, mul_one := _, nat_cast := comm_semiring.nat_cast (function.injective.comm_semiring f hf zero one add mul nsmul npow nat_cast), nat_cast_zero := _, nat_cast_succ := _, npow := comm_group_with_zero.npow (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), npow_zero' := _, npow_succ' := _, mul_comm := _, inv := comm_group_with_zero.inv (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), div := comm_group_with_zero.div (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), div_eq_mul_inv := _, zpow := comm_group_with_zero.zpow (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, inv_zero := _, mul_inv_cancel := _}
@[protected, reducible]
def
function.injective.field
{K : Type u_3}
[field K]
{K' : Type u_1}
[has_zero K']
[has_mul K']
[has_add K']
[has_neg K']
[has_sub K']
[has_one K']
[has_inv K']
[has_div K']
[has_smul ℕ K']
[has_smul ℤ K']
[has_smul ℚ K']
[has_pow K' ℕ]
[has_pow K' ℤ]
[has_nat_cast K']
[has_int_cast K']
[has_rat_cast K']
(f : K' → K)
(hf : function.injective f)
(zero : f 0 = 0)
(one : f 1 = 1)
(add : ∀ (x y : K'), f (x + y) = f x + f y)
(mul : ∀ (x y : K'), f (x * y) = f x * f y)
(neg : ∀ (x : K'), f (-x) = -f x)
(sub : ∀ (x y : K'), f (x - y) = f x - f y)
(inv : ∀ (x : K'), f x⁻¹ = (f x)⁻¹)
(div : ∀ (x y : K'), f (x / y) = f x / f y)
(nsmul : ∀ (x : K') (n : ℕ), f (n • x) = n • f x)
(zsmul : ∀ (x : K') (n : ℤ), f (n • x) = n • f x)
(qsmul : ∀ (x : K') (n : ℚ), f (n • x) = n • f x)
(npow : ∀ (x : K') (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ (x : K') (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ (n : ℕ), f ↑n = ↑n)
(int_cast : ∀ (n : ℤ), f ↑n = ↑n)
(rat_cast : ∀ (n : ℚ), f ↑n = ↑n) :
field K'
Pullback a field
along an injective function.
See note [reducible non-instances].
Equations
- function.injective.field f hf zero one add mul neg sub inv div nsmul zsmul qsmul npow zpow nat_cast int_cast rat_cast = {add := comm_ring.add (function.injective.comm_ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), add_assoc := _, zero := comm_group_with_zero.zero (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), zero_add := _, add_zero := _, nsmul := comm_ring.nsmul (function.injective.comm_ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), nsmul_zero' := _, nsmul_succ' := _, neg := comm_ring.neg (function.injective.comm_ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), sub := comm_ring.sub (function.injective.comm_ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), sub_eq_add_neg := _, zsmul := comm_ring.zsmul (function.injective.comm_ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, int_cast := comm_ring.int_cast (function.injective.comm_ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), nat_cast := comm_ring.nat_cast (function.injective.comm_ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast), one := comm_group_with_zero.one (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), nat_cast_zero := _, nat_cast_succ := _, int_cast_of_nat := _, int_cast_neg_succ_of_nat := _, mul := comm_group_with_zero.mul (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), mul_assoc := _, one_mul := _, mul_one := _, npow := comm_group_with_zero.npow (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, mul_comm := _, inv := comm_group_with_zero.inv (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), div := comm_group_with_zero.div (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), div_eq_mul_inv := _, zpow := comm_group_with_zero.zpow (function.injective.comm_group_with_zero f hf zero one mul inv div npow zpow), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, rat_cast := coe coe_to_lift, mul_inv_cancel := _, inv_zero := _, rat_cast_mk := _, qsmul := has_smul.smul _inst_12, qsmul_eq_mul' := _}
Order dual #
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[simp]
@[simp]
Lexicographic order #
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]