Power operations on monoids with zero, semirings, and rings #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file provides additional lemmas about the natural power operator on rings and semirings.
Further lemmas about ordered semirings and rings can be found in algebra.group_power.lemmas
.
theorem
pow_eq_zero_of_le
{M : Type u_3}
[monoid_with_zero M]
{x : M}
{n m : ℕ}
(hn : n ≤ m)
(hx : x ^ n = 0) :
theorem
pow_eq_zero
{M : Type u_3}
[monoid_with_zero M]
[no_zero_divisors M]
{x : M}
{n : ℕ}
(H : x ^ n = 0) :
x = 0
@[simp]
theorem
pow_eq_zero_iff
{M : Type u_3}
[monoid_with_zero M]
[no_zero_divisors M]
{a : M}
{n : ℕ}
(hn : 0 < n) :
theorem
pow_eq_zero_iff'
{M : Type u_3}
[monoid_with_zero M]
[no_zero_divisors M]
[nontrivial M]
{a : M}
{n : ℕ} :
theorem
pow_ne_zero_iff
{M : Type u_3}
[monoid_with_zero M]
[no_zero_divisors M]
{a : M}
{n : ℕ}
(hn : 0 < n) :
theorem
pow_ne_zero
{M : Type u_3}
[monoid_with_zero M]
[no_zero_divisors M]
{a : M}
(n : ℕ)
(h : a ≠ 0) :
@[protected, instance]
def
ne_zero.pow
{M : Type u_3}
[monoid_with_zero M]
[no_zero_divisors M]
{x : M}
[ne_zero x]
{n : ℕ} :
@[simp]
theorem
ring.inverse_pow
{M : Type u_3}
[monoid_with_zero M]
(r : M)
(n : ℕ) :
ring.inverse r ^ n = ring.inverse (r ^ n)
def
pow_monoid_with_zero_hom
{M : Type u_3}
[comm_monoid_with_zero M]
{n : ℕ}
(hn : 0 < n) :
M →*₀ M
We define x ↦ x^n
(for positive n : ℕ
) as a monoid_with_zero_hom
Equations
- pow_monoid_with_zero_hom hn = {to_fun := (pow_monoid_hom n).to_fun, map_zero' := _, map_one' := _, map_mul' := _}
@[simp]
theorem
coe_pow_monoid_with_zero_hom
{M : Type u_3}
[comm_monoid_with_zero M]
{n : ℕ}
(hn : 0 < n) :
⇑(pow_monoid_with_zero_hom hn) = λ (_x : M), _x ^ n
@[simp]
theorem
pow_monoid_with_zero_hom_apply
{M : Type u_3}
[comm_monoid_with_zero M]
{n : ℕ}
(hn : 0 < n)
(a : M) :
⇑(pow_monoid_with_zero_hom hn) a = a ^ n
Alias of neg_sq
.
Alias of neg_one_sq
.
@[simp]