scilib documentation

algebra.order.monoid.cancel.defs

Ordered cancellative monoids #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

@[class]
structure ordered_cancel_add_comm_monoid (α : Type u) :
Type u

An ordered cancellative additive commutative monoid is an additive commutative monoid with a partial order, in which addition is cancellative and monotone.

Instances of this typeclass
Instances of other typeclasses for ordered_cancel_add_comm_monoid
  • ordered_cancel_add_comm_monoid.has_sizeof_inst
@[class]
structure ordered_cancel_comm_monoid (α : Type u) :
Type u
  • mul : α α α
  • mul_assoc : (a b c : α), a * b * c = a * (b * c)
  • one : α
  • one_mul : (a : α), 1 * a = a
  • mul_one : (a : α), a * 1 = a
  • npow : α α
  • npow_zero' : ( (x : α), ordered_cancel_comm_monoid.npow 0 x = 1) . "try_refl_tac"
  • npow_succ' : ( (n : ) (x : α), ordered_cancel_comm_monoid.npow n.succ x = x * ordered_cancel_comm_monoid.npow n x) . "try_refl_tac"
  • mul_comm : (a b : α), a * b = b * a
  • le : α α Prop
  • lt : α α Prop
  • le_refl : (a : α), a a
  • le_trans : (a b c : α), a b b c a c
  • lt_iff_le_not_le : ( (a b : α), a < b a b ¬b a) . "order_laws_tac"
  • le_antisymm : (a b : α), a b b a a = b
  • mul_le_mul_left : (a b : α), a b (c : α), c * a c * b
  • le_of_mul_le_mul_left : (a b c : α), a * b a * c b c

An ordered cancellative commutative monoid is a commutative monoid with a partial order, in which multiplication is cancellative and monotone.

Instances of this typeclass
Instances of other typeclasses for ordered_cancel_comm_monoid
  • ordered_cancel_comm_monoid.has_sizeof_inst
theorem ordered_cancel_add_comm_monoid.lt_of_add_lt_add_left {α : Type u} [ordered_cancel_add_comm_monoid α] (a b c : α) :
a + b < a + c b < c
theorem ordered_cancel_comm_monoid.lt_of_mul_lt_mul_left {α : Type u} [ordered_cancel_comm_monoid α] (a b c : α) :
a * b < a * c b < c
@[class]
structure linear_ordered_cancel_add_comm_monoid (α : Type u) :
Type u

A linearly ordered cancellative additive commutative monoid is an additive commutative monoid with a decidable linear order in which addition is cancellative and monotone.

Instances of this typeclass
Instances of other typeclasses for linear_ordered_cancel_add_comm_monoid
  • linear_ordered_cancel_add_comm_monoid.has_sizeof_inst
@[class]
structure linear_ordered_cancel_comm_monoid (α : Type u) :
Type u

A linearly ordered cancellative commutative monoid is a commutative monoid with a linear order in which multiplication is cancellative and monotone.

Instances of this typeclass
Instances of other typeclasses for linear_ordered_cancel_comm_monoid
  • linear_ordered_cancel_comm_monoid.has_sizeof_inst