Canonically ordered monoids #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
An ordered_comm_monoid
with one-sided 'division' in the sense that
if a ≤ b
, there is some c
for which a * c = b
. This is a weaker version
of the condition on canonical orderings defined by canonically_ordered_monoid
.
An ordered_add_comm_monoid
with one-sided 'subtraction' in the sense that
if a ≤ b
, then there is some c
for which a + c = b
. This is a weaker version
of the condition on canonical orderings defined by canonically_ordered_add_monoid
.
Instances of this typeclass
- add : α → α → α
- add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), canonically_ordered_add_monoid.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), canonically_ordered_add_monoid.nsmul n.succ x = x + canonically_ordered_add_monoid.nsmul n x) . "try_refl_tac"
- add_comm : ∀ (a b : α), a + b = b + a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- add_le_add_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c + a ≤ c + b
- bot : α
- bot_le : ∀ (x : α), ⊥ ≤ x
- exists_add_of_le : ∀ {a b : α}, a ≤ b → (∃ (c : α), b = a + c)
- le_self_add : ∀ (a b : α), a ≤ a + b
A canonically ordered additive monoid is an ordered commutative additive monoid
in which the ordering coincides with the subtractibility relation,
which is to say, a ≤ b
iff there exists c
with b = a + c
.
This is satisfied by the natural numbers, for example, but not
the integers or other nontrivial ordered_add_comm_group
s.
Instances of this typeclass
- canonically_linear_ordered_add_monoid.to_canonically_ordered_add_monoid
- canonically_ordered_comm_semiring.to_canonically_ordered_add_monoid
- idem_semiring.to_canonically_ordered_add_monoid
- with_zero.canonically_ordered_add_monoid
- additive.canonically_ordered_add_monoid
- with_top.canonically_ordered_add_monoid
- multiset.canonically_ordered_add_monoid
- punit.canonically_ordered_add_monoid
- prod.canonically_ordered_add_monoid
- nonneg.canonically_ordered_add_monoid
- pi.canonically_ordered_add_monoid
- submodule.canonically_ordered_add_monoid
- part_enat.canonically_ordered_add_monoid
- cardinal.canonically_ordered_add_monoid
- finsupp.canonically_ordered_add_monoid
Instances of other typeclasses for canonically_ordered_add_monoid
- canonically_ordered_add_monoid.has_sizeof_inst
Equations
- mul : α → α → α
- mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- npow : ℕ → α → α
- npow_zero' : (∀ (x : α), canonically_ordered_monoid.npow 0 x = 1) . "try_refl_tac"
- npow_succ' : (∀ (n : ℕ) (x : α), canonically_ordered_monoid.npow n.succ x = x * canonically_ordered_monoid.npow n x) . "try_refl_tac"
- mul_comm : ∀ (a b : α), a * b = b * a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- mul_le_mul_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c * a ≤ c * b
- bot : α
- bot_le : ∀ (x : α), ⊥ ≤ x
- exists_mul_of_le : ∀ {a b : α}, a ≤ b → (∃ (c : α), b = a * c)
- le_self_mul : ∀ (a b : α), a ≤ a * b
A canonically ordered monoid is an ordered commutative monoid
in which the ordering coincides with the divisibility relation,
which is to say, a ≤ b
iff there exists c
with b = a * c
.
Examples seem rare; it seems more likely that the order_dual
of a naturally-occurring lattice satisfies this than the lattice
itself (for example, dual of the lattice of ideals of a PID or
Dedekind domain satisfy this; collections of all things ≤ 1 seem to
be more natural that collections of all things ≥ 1).
Instances of this typeclass
Instances of other typeclasses for canonically_ordered_monoid
- canonically_ordered_monoid.has_sizeof_inst
Equations
- add : α → α → α
- add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), canonically_linear_ordered_add_monoid.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), canonically_linear_ordered_add_monoid.nsmul n.succ x = x + canonically_linear_ordered_add_monoid.nsmul n x) . "try_refl_tac"
- add_comm : ∀ (a b : α), a + b = b + a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- add_le_add_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c + a ≤ c + b
- bot : α
- bot_le : ∀ (x : α), ⊥ ≤ x
- exists_add_of_le : ∀ {a b : α}, a ≤ b → (∃ (c : α), b = a + c)
- le_self_add : ∀ (a b : α), a ≤ a + b
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
- max : α → α → α
- max_def : canonically_linear_ordered_add_monoid.max = max_default . "reflexivity"
- min : α → α → α
- min_def : canonically_linear_ordered_add_monoid.min = min_default . "reflexivity"
A canonically linear-ordered additive monoid is a canonically ordered additive monoid whose ordering is a linear order.
Instances of this typeclass
- canonically_linear_ordered_semifield.to_canonically_linear_ordered_add_monoid
- with_zero.canonically_linear_ordered_add_monoid
- nat.canonically_linear_ordered_add_monoid
- additive.canonically_linear_ordered_add_monoid
- with_top.canonically_linear_ordered_add_monoid
- nonneg.canonically_linear_ordered_add_monoid
- ennreal.canonically_linear_ordered_add_monoid
- enat.canonically_linear_ordered_add_monoid
- cardinal.canonically_linear_ordered_add_monoid
Instances of other typeclasses for canonically_linear_ordered_add_monoid
- canonically_linear_ordered_add_monoid.has_sizeof_inst
- mul : α → α → α
- mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- npow : ℕ → α → α
- npow_zero' : (∀ (x : α), canonically_linear_ordered_monoid.npow 0 x = 1) . "try_refl_tac"
- npow_succ' : (∀ (n : ℕ) (x : α), canonically_linear_ordered_monoid.npow n.succ x = x * canonically_linear_ordered_monoid.npow n x) . "try_refl_tac"
- mul_comm : ∀ (a b : α), a * b = b * a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- mul_le_mul_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c * a ≤ c * b
- bot : α
- bot_le : ∀ (x : α), ⊥ ≤ x
- exists_mul_of_le : ∀ {a b : α}, a ≤ b → (∃ (c : α), b = a * c)
- le_self_mul : ∀ (a b : α), a ≤ a * b
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
- max : α → α → α
- max_def : canonically_linear_ordered_monoid.max = max_default . "reflexivity"
- min : α → α → α
- min_def : canonically_linear_ordered_monoid.min = min_default . "reflexivity"
A canonically linear-ordered monoid is a canonically ordered monoid whose ordering is a linear order.
Instances of this typeclass
Instances of other typeclasses for canonically_linear_ordered_monoid
- canonically_linear_ordered_monoid.has_sizeof_inst
Equations
- canonically_linear_ordered_add_monoid.semilattice_sup = {sup := lattice.sup linear_order.to_lattice, le := lattice.le linear_order.to_lattice, lt := lattice.lt linear_order.to_lattice, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _}
Equations
- canonically_linear_ordered_monoid.semilattice_sup = {sup := lattice.sup linear_order.to_lattice, le := lattice.le linear_order.to_lattice, lt := lattice.lt linear_order.to_lattice, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _}
In a linearly ordered monoid, we are happy for bot_eq_one
to be a @[simp]
lemma.
In a linearly ordered monoid, we are happy for bot_eq_zero
to be a @[simp]
lemma