scilib documentation

algebra.order.nonneg.floor

Nonnegative elements are archimedean #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file defines instances and prove some properties about the nonnegative elements {x : α // 0 ≤ x} of an arbitrary type α.

This is used to derive algebraic structures on ℝ≥0 and ℚ≥0 automatically.

Main declarations #

@[protected, instance]
def nonneg.archimedean {α : Type u_1} [ordered_add_comm_monoid α] [archimedean α] :
archimedean {x // 0 x}
@[protected, instance]
def nonneg.floor_semiring {α : Type u_1} [ordered_semiring α] [floor_semiring α] :
floor_semiring {r // 0 r}
Equations
@[norm_cast]
theorem nonneg.nat_floor_coe {α : Type u_1} [ordered_semiring α] [floor_semiring α] (a : {r // 0 r}) :
@[norm_cast]
theorem nonneg.nat_ceil_coe {α : Type u_1} [ordered_semiring α] [floor_semiring α] (a : {r // 0 r}) :