Lemma about subtraction in ordered monoids with a top element adjoined. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[protected, instance]
Equations
- with_top.has_sub = {sub := with_top.sub _inst_2}
theorem
with_top.map_sub
{α : Type u_1}
{β : Type u_2}
[has_sub α]
[has_zero α]
[has_sub β]
[has_zero β]
{f : α → β}
(h : ∀ (x y : α), f (x - y) = f x - f y)
(h₀ : f 0 = 0)
(x y : with_top α) :
with_top.map f (x - y) = with_top.map f x - with_top.map f y
@[protected, instance]
def
with_top.has_ordered_sub
{α : Type u_1}
[canonically_ordered_add_monoid α]
[has_sub α]
[has_ordered_sub α] :