A collection of specific limit computations #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file, by design, is independent of normed_space
in the import hierarchy. It contains
important specific limit computations in metric spaces, in ordered rings/fields, and in specific
instances of these such as ℝ
, ℝ≥0
and ℝ≥0∞
.
The limit of n / (n + x)
is 1, for any constant x
(valid in ℝ
or any topological division
algebra over ℝ
, e.g., ℂ
).
TODO: introduce a typeclass saying that 1 / n
tends to 0 at top, making it possible to get this
statement simultaneously on ℚ
, ℝ
and ℂ
.
Powers #
Geometric series #
Sequences with geometrically decaying distance in metric spaces #
In this paragraph, we discuss sequences in metric spaces or emetric spaces for which the distance between two consecutive terms decays geometrically. We show that such sequences are Cauchy sequences, and bound their distances to the limit. We also discuss series with geometrically decaying terms.
If edist (f n) (f (n+1))
is bounded by C * r^n
, C ≠ ∞
, r < 1
,
then f
is a Cauchy sequence.
If edist (f n) (f (n+1))
is bounded by C * r^n
, then the distance from
f n
to the limit of f
is bounded above by C * r^n / (1 - r)
.
If edist (f n) (f (n+1))
is bounded by C * r^n
, then the distance from
f 0
to the limit of f
is bounded above by C / (1 - r)
.
If edist (f n) (f (n+1))
is bounded by C * 2^-n
, then f
is a Cauchy sequence.
If edist (f n) (f (n+1))
is bounded by C * 2^-n
, then the distance from
f n
to the limit of f
is bounded above by 2 * C * 2^-n
.
If edist (f n) (f (n+1))
is bounded by C * 2^-n
, then the distance from
f 0
to the limit of f
is bounded above by 2 * C
.
If dist (f n) (f (n+1))
is bounded by C * r^n
, r < 1
, then f
is a Cauchy sequence.
Note that this lemma does not assume 0 ≤ C
or 0 ≤ r
.
If dist (f n) (f (n+1))
is bounded by C * r^n
, r < 1
, then the distance from
f n
to the limit of f
is bounded above by C * r^n / (1 - r)
.
If dist (f n) (f (n+1))
is bounded by C * r^n
, r < 1
, then the distance from
f 0
to the limit of f
is bounded above by C / (1 - r)
.
If dist (f n) (f (n+1))
is bounded by (C / 2) / 2^n
, then f
is a Cauchy sequence.
If dist (f n) (f (n+1))
is bounded by (C / 2) / 2^n
, then the distance from
f 0
to the limit of f
is bounded above by C
.
If dist (f n) (f (n+1))
is bounded by (C / 2) / 2^n
, then the distance from
f n
to the limit of f
is bounded above by C / 2^n
.
Summability tests based on comparison with geometric series #
Positive sequences with small sums on countable types #
For any positive ε
, define on an encodable type a positive sequence with sum less than ε