Finite intervals in fin n
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file proves that fin n
is a locally_finite_order
and calculates the cardinality of its
intervals as finsets and fintypes.
@[protected, instance]
@[protected, instance]
@[protected, instance]
theorem
fin.Icc_eq_finset_subtype
{n : ℕ}
(a b : fin n) :
finset.Icc a b = finset.fin n (finset.Icc ↑a ↑b)
theorem
fin.Ico_eq_finset_subtype
{n : ℕ}
(a b : fin n) :
finset.Ico a b = finset.fin n (finset.Ico ↑a ↑b)
theorem
fin.Ioc_eq_finset_subtype
{n : ℕ}
(a b : fin n) :
finset.Ioc a b = finset.fin n (finset.Ioc ↑a ↑b)
theorem
fin.Ioo_eq_finset_subtype
{n : ℕ}
(a b : fin n) :
finset.Ioo a b = finset.fin n (finset.Ioo ↑a ↑b)
@[simp]
theorem
fin.map_subtype_embedding_Icc
{n : ℕ}
(a b : fin n) :
finset.map fin.coe_embedding (finset.Icc a b) = finset.Icc ↑a ↑b
@[simp]
theorem
fin.map_subtype_embedding_Ico
{n : ℕ}
(a b : fin n) :
finset.map fin.coe_embedding (finset.Ico a b) = finset.Ico ↑a ↑b
@[simp]
theorem
fin.map_subtype_embedding_Ioc
{n : ℕ}
(a b : fin n) :
finset.map fin.coe_embedding (finset.Ioc a b) = finset.Ioc ↑a ↑b
@[simp]
theorem
fin.map_subtype_embedding_Ioo
{n : ℕ}
(a b : fin n) :
finset.map fin.coe_embedding (finset.Ioo a b) = finset.Ioo ↑a ↑b
theorem
fin.Ici_eq_finset_subtype
{n : ℕ}
(a : fin n) :
finset.Ici a = finset.fin n (finset.Icc ↑a n)
theorem
fin.Ioi_eq_finset_subtype
{n : ℕ}
(a : fin n) :
finset.Ioi a = finset.fin n (finset.Ioc ↑a n)
@[simp]
theorem
fin.map_subtype_embedding_Ici
{n : ℕ}
(a : fin n) :
finset.map fin.coe_embedding (finset.Ici a) = finset.Icc ↑a (n - 1)
@[simp]
theorem
fin.map_subtype_embedding_Ioi
{n : ℕ}
(a : fin n) :
finset.map fin.coe_embedding (finset.Ioi a) = finset.Ioc ↑a (n - 1)
@[simp]
@[simp]
@[simp]
@[simp]