The cartesian product of finsets #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
pi #
The empty dependent product function, defined on the empty set. The assumption a ∈ ∅
is never
satisfied.
Equations
- finset.pi.empty β a h = multiset.pi.empty β a h
def
finset.pi
{α : Type u_1}
{β : α → Type u_2}
[decidable_eq α]
(s : finset α)
(t : Π (a : α), finset (β a)) :
Given a finset s
of α
and for all a : α
a finset t a
of δ a
, then one can define the
finset s.pi t
of all functions defined on elements of s
taking values in t a
for a ∈ s
.
Note that the elements of s.pi t
are only partially defined, on s
.
def
finset.pi.cons
{α : Type u_1}
{δ : α → Sort u_3}
[decidable_eq α]
(s : finset α)
(a : α)
(b : δ a)
(f : Π (a : α), a ∈ s → δ a)
(a' : α)
(h : a' ∈ has_insert.insert a s) :
δ a'
Given a function f
defined on a finset s
, define a new function on the finset s ∪ {a}
,
equal to f
on s
and sending a
to a given value b
. This function is denoted
s.pi.cons a b f
. If a
already belongs to s
, the new function takes the value b
at a
anyway.
Equations
- finset.pi.cons s a b f a' h = multiset.pi.cons s.val a b f a' _
@[simp]
theorem
finset.pi.cons_same
{α : Type u_1}
{δ : α → Sort u_3}
[decidable_eq α]
(s : finset α)
(a : α)
(b : δ a)
(f : Π (a : α), a ∈ s → δ a)
(h : a ∈ has_insert.insert a s) :
finset.pi.cons s a b f a h = b
theorem
finset.pi.cons_ne
{α : Type u_1}
{δ : α → Sort u_3}
[decidable_eq α]
{s : finset α}
{a a' : α}
{b : δ a}
{f : Π (a : α), a ∈ s → δ a}
{h : a' ∈ has_insert.insert a s}
(ha : a ≠ a') :
finset.pi.cons s a b f a' h = f a' _
theorem
finset.pi.cons_injective
{α : Type u_1}
{δ : α → Sort u_3}
[decidable_eq α]
{a : α}
{b : δ a}
{s : finset α}
(hs : a ∉ s) :
function.injective (finset.pi.cons s a b)
@[simp]
theorem
finset.pi_empty
{α : Type u_1}
{β : α → Type u_2}
[decidable_eq α]
{t : Π (a : α), finset (β a)} :
∅.pi t = {finset.pi.empty β}
@[simp]
theorem
finset.pi_insert
{α : Type u_1}
{β : α → Type u_2}
[decidable_eq α]
[Π (a : α), decidable_eq (β a)]
{s : finset α}
{t : Π (a : α), finset (β a)}
{a : α}
(ha : a ∉ s) :
(has_insert.insert a s).pi t = (t a).bUnion (λ (b : β a), finset.image (finset.pi.cons s a b) (s.pi t))
theorem
finset.pi_singletons
{α : Type u_1}
[decidable_eq α]
{β : Type u_2}
(s : finset α)
(f : α → β) :
theorem
finset.pi_const_singleton
{α : Type u_1}
[decidable_eq α]
{β : Type u_2}
(s : finset α)
(i : β) :
theorem
finset.pi_subset
{α : Type u_1}
{β : α → Type u_2}
[decidable_eq α]
{s : finset α}
(t₁ t₂ : Π (a : α), finset (β a))
(h : ∀ (a : α), a ∈ s → t₁ a ⊆ t₂ a) :
theorem
finset.pi_disjoint_of_disjoint
{α : Type u_1}
[decidable_eq α]
{δ : α → Type u_2}
{s : finset α}
(t₁ t₂ : Π (a : α), finset (δ a))
{a : α}
(ha : a ∈ s)
(h : disjoint (t₁ a) (t₂ a)) :