Lexicographic order on Pi types #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines the lexicographic order for Pi types. a
is less than b
if a i = b i
for all
i
up to some point k
, and a k < b k
.
Notation #
Πₗ i, α i
: Pi type equipped with the lexicographic order. Type synonym ofΠ i, α i
.
See also #
Related files are:
data.finset.colex
: Colexicographic order on finite sets.data.list.lex
: Lexicographic order on lists.data.sigma.order
: Lexicographic order onΣₗ i, α i
.data.psigma.order
: Lexicographic order onΣₗ' i, α i
.data.prod.lex
: Lexicographic order onα × β
.
@[protected, instance]
Equations
@[protected]
def
pi.lex
{ι : Type u_1}
{β : ι → Type u_2}
(r : ι → ι → Prop)
(s : Π {i : ι}, β i → β i → Prop)
(x y : Π (i : ι), β i) :
Prop
The lexicographic relation on Π i : ι, β i
, where ι
is ordered by r
,
and each β i
is ordered by s
.
@[simp]
theorem
pi.lex_lt_of_lt
{ι : Type u_1}
{β : ι → Type u_2}
[Π (i : ι), partial_order (β i)]
{r : ι → ι → Prop}
(hwf : well_founded r)
{x y : Π (i : ι), β i}
(hlt : x < y) :
theorem
pi.is_trichotomous_lex
{ι : Type u_1}
{β : ι → Type u_2}
(r : ι → ι → Prop)
(s : Π {i : ι}, β i → β i → Prop)
[∀ (i : ι), is_trichotomous (β i) s]
(wf : well_founded r) :
is_trichotomous (Π (i : ι), β i) (pi.lex r s)
@[protected, instance]
def
pi.lex.is_strict_order
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[Π (a : ι), partial_order (β a)] :
is_strict_order (lex (Π (i : ι), β i)) has_lt.lt
@[protected, instance]
def
pi.lex.partial_order
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[Π (a : ι), partial_order (β a)] :
partial_order (lex (Π (i : ι), β i))
Equations
@[protected, instance]
noncomputable
def
pi.lex.linear_order
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (a : ι), linear_order (β a)] :
linear_order (lex (Π (i : ι), β i))
Πₗ i, α i
is a linear order if the original order is well-founded.
Equations
theorem
pi.to_lex_monotone
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (i : ι), partial_order (β i)] :
theorem
pi.to_lex_strict_mono
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (i : ι), partial_order (β i)] :
@[simp]
theorem
pi.lt_to_lex_update_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (i : ι), partial_order (β i)]
{x : Π (i : ι), β i}
{i : ι}
{a : β i} :
@[simp]
theorem
pi.to_lex_update_lt_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (i : ι), partial_order (β i)]
{x : Π (i : ι), β i}
{i : ι}
{a : β i} :
@[simp]
theorem
pi.le_to_lex_update_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (i : ι), partial_order (β i)]
{x : Π (i : ι), β i}
{i : ι}
{a : β i} :
@[simp]
theorem
pi.to_lex_update_le_self_iff
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (i : ι), partial_order (β i)]
{x : Π (i : ι), β i}
{i : ι}
{a : β i} :
@[protected, instance]
def
pi.lex.order_bot
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (a : ι), partial_order (β a)]
[Π (a : ι), order_bot (β a)] :
@[protected, instance]
def
pi.lex.order_top
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (a : ι), partial_order (β a)]
[Π (a : ι), order_top (β a)] :
@[protected, instance]
def
pi.lex.bounded_order
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[Π (a : ι), partial_order (β a)]
[Π (a : ι), bounded_order (β a)] :
bounded_order (lex (Π (a : ι), β a))
Equations
- pi.lex.bounded_order = {top := order_top.top pi.lex.order_top, le_top := _, bot := order_bot.bot pi.lex.order_bot, bot_le := _}
@[protected, instance]
def
pi.lex.densely_ordered
{ι : Type u_1}
{β : ι → Type u_2}
[preorder ι]
[Π (i : ι), has_lt (β i)]
[∀ (i : ι), densely_ordered (β i)] :
densely_ordered (lex (Π (i : ι), β i))
theorem
pi.lex.no_max_order'
{ι : Type u_1}
{β : ι → Type u_2}
[preorder ι]
[Π (i : ι), has_lt (β i)]
(i : ι)
[no_max_order (β i)] :
no_max_order (lex (Π (i : ι), β i))
@[protected, instance]
def
pi.lex.no_max_order
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[nonempty ι]
[Π (i : ι), partial_order (β i)]
[∀ (i : ι), no_max_order (β i)] :
no_max_order (lex (Π (i : ι), β i))
@[protected, instance]
def
pi.lex.no_min_order
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[is_well_order ι has_lt.lt]
[nonempty ι]
[Π (i : ι), partial_order (β i)]
[∀ (i : ι), no_min_order (β i)] :
no_min_order (lex (Π (i : ι), β i))
@[protected, instance]
def
pi.lex.ordered_comm_group
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[Π (a : ι), ordered_comm_group (β a)] :
ordered_comm_group (lex (Π (i : ι), β i))
Equations
- pi.lex.ordered_comm_group = {mul := comm_group.mul pi.comm_group, mul_assoc := _, one := comm_group.one pi.comm_group, one_mul := _, mul_one := _, npow := comm_group.npow pi.comm_group, npow_zero' := _, npow_succ' := _, inv := comm_group.inv pi.comm_group, div := comm_group.div pi.comm_group, div_eq_mul_inv := _, zpow := comm_group.zpow pi.comm_group, zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _, mul_comm := _, le := partial_order.le pi.lex.partial_order, lt := partial_order.lt pi.lex.partial_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
@[protected, instance]
def
pi.lex.ordered_add_comm_group
{ι : Type u_1}
{β : ι → Type u_2}
[linear_order ι]
[Π (a : ι), ordered_add_comm_group (β a)] :
ordered_add_comm_group (lex (Π (i : ι), β i))
Equations
- pi.lex.ordered_add_comm_group = {add := add_comm_group.add pi.add_comm_group, add_assoc := _, zero := add_comm_group.zero pi.add_comm_group, zero_add := _, add_zero := _, nsmul := add_comm_group.nsmul pi.add_comm_group, nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg pi.add_comm_group, sub := add_comm_group.sub pi.add_comm_group, sub_eq_add_neg := _, zsmul := add_comm_group.zsmul pi.add_comm_group, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, le := partial_order.le pi.lex.partial_order, lt := partial_order.lt pi.lex.partial_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
theorem
pi.lex_desc
{ι : Type u_1}
{α : Type u_2}
[preorder ι]
[decidable_eq ι]
[preorder α]
{f : ι → α}
{i j : ι}
(h₁ : i < j)
(h₂ : f j < f i) :
If we swap two strictly decreasing values in a function, then the result is lexicographically smaller than the original function.