Intervals #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In any preorder α, we define intervals (which on each side can be either infinite, open, or
closed) using the following naming conventions:
i: infiniteo: openc: closed
Each interval has the name I + letter for left side + letter for right side. For instance,
Ioc a b denotes the inverval (a, b].
This file contains these definitions, and basic facts on inclusion, intersection, difference of
intervals (where the precise statements may depend on the properties of the order, in particular
for some statements it should be linear_order or densely_ordered).
TODO: This is just the beginning; a lot of rules are missing
Left-open right-open interval
Instances for set.Ioo
        
        
    Instances for ↥set.Ioo
        
    Left-closed right-open interval
Instances for set.Ico
        
        
    Left-infinite right-open interval
Instances for set.Iio
        
        
    Left-closed right-closed interval
Instances for set.Icc
        
        
    Instances for ↥set.Icc
        - set.fintype_Icc
 - set.Icc.semilattice_inf
 - set.Icc.semilattice_sup
 - set.Icc.lattice
 - compact_space_Icc
 - set.Icc.has_zero
 - set.Icc.has_one
 - set.Icc.has_mul
 - set.Icc.has_pow
 - set.Icc.monoid_with_zero
 - set.Icc.comm_monoid_with_zero
 - set.Icc.cancel_monoid_with_zero
 - set.Icc.cancel_comm_monoid_with_zero
 - unit_interval.has_zero
 - unit_interval.has_one
 - unit_interval.nonempty
 - unit_interval.has_mul
 - unit_interval.connected_space
 
Left-infinite right-closed interval
Instances for set.Iic
        
        
    Instances for ↥set.Iic
        - set.nonempty_Iic_subtype
 - set.Iic.no_min_order
 - set.fintype_Iic
 - set.Iic.semilattice_inf
 - set.Iic.semilattice_sup
 - set.Iic.lattice
 - set.Iic.order_top
 - set.Iic.order_bot
 - set.Iic.bounded_order
 - is_modular_lattice.is_modular_lattice_Iic
 - is_modular_lattice.complemented_lattice_Iic
 - is_atomic.set.Iic.is_atomic
 - cardinal.set.Iic.small
 - ordinal.small_Iic
 - set.Iic.infinite
 
Left-open right-closed interval
Instances for set.Ioc
        
        - set.ord_connected_Ioc
 - filter.tendsto_Ioc_at_top_at_top
 - filter.tendsto_Ioc_at_bot_at_bot
 - filter.tendsto_Ioc_Ici_Ioi
 - filter.tendsto_Ioc_Iic_Iic
 - filter.tendsto_Ioc_Iio_Iio
 - filter.tendsto_Ioc_Ioi_Ioi
 - filter.tendsto_Ioc_Icc_Icc
 - filter.tendsto_Ioc_pure_bot
 - filter.tendsto_Ioc_uIcc_uIcc
 - tendsto_Ioc_class_nhds
 
Left-closed right-infinite interval
Instances for set.Ici
        
        
    Instances for ↥set.Ici
        - set.nonempty_Ici_subtype
 - set.Ici.no_max_order
 - set.fintype_Ici
 - set.Ici.semilattice_inf
 - set.Ici.semilattice_sup
 - set.Ici.lattice
 - set.Ici.distrib_lattice
 - set.Ici.order_bot
 - set.Ici.order_top
 - set.Ici.bounded_order
 - is_modular_lattice.is_modular_lattice_Ici
 - is_modular_lattice.complemented_lattice_Ici
 - is_coatomic.set.Ici.is_coatomic
 - set.Ici.infinite
 
Left-open right-infinite interval
Instances for set.Ioi
        
        
    Equations
- set.decidable_mem_Iio = _inst_2
 
Equations
- set.decidable_mem_Iic = _inst_2
 
Equations
- set.decidable_mem_Ici = _inst_2
 
Equations
- set.decidable_mem_Ioi = _inst_2
 
In an order without maximal elements, the intervals Ioi are nonempty.
In an order without minimal elements, the intervals Iio are nonempty.
Unions of adjacent intervals #
Two infinite intervals #
A finite and an infinite interval #
An infinite and a finite interval #
Two finite intervals, I?o and Ic? #
        Two finite intervals, I?c and Io? #
        Two finite intervals with a common point #
We cannot replace < by ≤ in the hypotheses.
Otherwise for b < a = d < c the l.h.s. is ∅ and the r.h.s. is {a}.