Extra lemmas about intervals #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains lemmas about intervals that cannot be included into data.set.intervals.basic
because this would create an import
cycle. Namely, lemmas in this file can use definitions
from data.set.lattice
, including disjoint
.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
set.Ico_disjoint_Ico
{α : Type v}
[linear_order α]
{a₁ a₂ b₁ b₂ : α} :
disjoint (set.Ico a₁ a₂) (set.Ico b₁ b₂) ↔ linear_order.min a₂ b₂ ≤ linear_order.max a₁ b₁
@[simp]
theorem
set.Ioc_disjoint_Ioc
{α : Type v}
[linear_order α]
{a₁ a₂ b₁ b₂ : α} :
disjoint (set.Ioc a₁ a₂) (set.Ioc b₁ b₂) ↔ linear_order.min a₂ b₂ ≤ linear_order.max a₁ b₁
theorem
set.eq_of_Ico_disjoint
{α : Type v}
[linear_order α]
{x₁ x₂ y₁ y₂ : α}
(h : disjoint (set.Ico x₁ x₂) (set.Ico y₁ y₂))
(hx : x₁ < x₂)
(h2 : x₂ ∈ set.Ico y₁ y₂) :
y₁ = x₂
If two half-open intervals are disjoint and the endpoint of one lies in the other, then it must be equal to the endpoint of the other.
theorem
is_glb.Union_Ioi_eq
{ι : Sort u}
{α : Type v}
[linear_order α]
{a : α}
{f : ι → α}
(h : is_glb (set.range f) a) :
theorem
is_lub.Union_Iio_eq
{ι : Sort u}
{α : Type v}
[linear_order α]
{a : α}
{f : ι → α}
(h : is_lub (set.range f) a) :