Lemmas about list
s and set.range
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we prove lemmas about range of some operations on lists.
theorem
set.range_list_nth
{α : Type u_1}
(l : list α) :
set.range l.nth = has_insert.insert option.none (option.some '' {x : α | x ∈ l})
@[simp]
@[simp]
theorem
set.range_list_inth
{α : Type u_1}
[inhabited α]
(l : list α) :
set.range l.inth = has_insert.insert inhabited.default {x : α | x ∈ l}
@[protected, instance]
def
list.can_lift
{α : Type u_1}
{β : Type u_2}
(c : out_param (β → α))
(p : out_param (α → Prop))
[can_lift α β c p] :
If each element of a list can be lifted to some type, then the whole list can be lifted to this type.
Equations
- list.can_lift c p = {prf := _}