Commutators of Subgroups #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
If G is a group and H₁ H₂ : subgroup G then the commutator ⁅H₁, H₂⁆ : subgroup G
is the subgroup of G generated by the commutators h₁ * h₂ * h₁⁻¹ * h₂⁻¹.
Main definitions #
⁅g₁, g₂⁆: the commutator of the elementsg₁andg₂(defined bycommutator_elementelsewhere).⁅H₁, H₂⁆: the commutator of the subgroupsH₁andH₂.
@[protected, instance]
The commutator of two subgroups H₁ and H₂.
theorem
subgroup.map_commutator
{G : Type u_1}
{G' : Type u_2}
[group G]
[group G']
(H₁ H₂ : subgroup G)
(f : G →* G') :
subgroup.map f ⁅H₁, H₂⁆ = ⁅subgroup.map f H₁, subgroup.map f H₂⁆
theorem
subgroup.commutator_le_map_commutator
{G : Type u_1}
{G' : Type u_2}
[group G]
[group G']
{H₁ H₂ : subgroup G}
{f : G →* G'}
{K₁ K₂ : subgroup G'}
(h₁ : K₁ ≤ subgroup.map f H₁)
(h₂ : K₂ ≤ subgroup.map f H₂) :
@[protected, instance]
def
subgroup.commutator_characteristic
{G : Type u_1}
[group G]
(H₁ H₂ : subgroup G)
[h₁ : H₁.characteristic]
[h₂ : H₂.characteristic] :
⁅H₁, H₂⁆.characteristic
theorem
subgroup.commutator_pi_pi_le
{η : Type u_1}
{Gs : η → Type u_2}
[Π (i : η), group (Gs i)]
(H K : Π (i : η), subgroup (Gs i)) :
⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ ≤ subgroup.pi set.univ (λ (i : η), ⁅H i, K i⁆)
The commutator of direct product is contained in the direct product of the commutators.
See commutator_pi_pi_of_finite for equality given fintype η.
theorem
subgroup.commutator_pi_pi_of_finite
{η : Type u_1}
[finite η]
{Gs : η → Type u_2}
[Π (i : η), group (Gs i)]
(H K : Π (i : η), subgroup (Gs i)) :
⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ = subgroup.pi set.univ (λ (i : η), ⁅H i, K i⁆)
The commutator of a finite direct product is contained in the direct product of the commutators.
The set of commutator elements ⁅g₁, g₂⁆ in G.
Instances for ↥commutator_set
@[protected, instance]
theorem
commutator_mem_commutator_set
{G : Type u_1}
[group G]
(g₁ g₂ : G) :
⁅g₁, g₂⁆ ∈ commutator_set G