Subgroups generated by an element #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Tags #
subgroup, subgroups
The subgroup generated by an element.
Equations
- subgroup.zpowers g = (⇑(zpowers_hom G) g).range.copy (set.range (has_pow.pow g)) _
Instances for subgroup.zpowers
Instances for ↥subgroup.zpowers
@[simp]
@[norm_cast]
@[simp]
theorem
subgroup.range_zpowers_hom
{G : Type u_1}
[group G]
(g : G) :
(⇑(zpowers_hom G) g).range = subgroup.zpowers g
@[simp]
theorem
subgroup.zpow_mem_zpowers
{G : Type u_1}
[group G]
(g : G)
(k : ℤ) :
g ^ k ∈ subgroup.zpowers g
@[simp]
theorem
subgroup.npow_mem_zpowers
{G : Type u_1}
[group G]
(g : G)
(k : ℕ) :
g ^ k ∈ subgroup.zpowers g
@[simp]
theorem
subgroup.forall_zpowers
{G : Type u_1}
[group G]
{x : G}
{p : ↥(subgroup.zpowers x) → Prop} :
@[simp]
theorem
subgroup.exists_zpowers
{G : Type u_1}
[group G]
{x : G}
{p : ↥(subgroup.zpowers x) → Prop} :
theorem
subgroup.forall_mem_zpowers
{G : Type u_1}
[group G]
{x : G}
{p : G → Prop} :
(∀ (g : G), g ∈ subgroup.zpowers x → p g) ↔ ∀ (m : ℤ), p (x ^ m)
@[protected, instance]
The subgroup generated by an element.
Equations
- add_subgroup.zmultiples a = (⇑(zmultiples_hom A) a).range.copy (set.range (λ (_x : ℤ), _x • a)) _
Instances for add_subgroup.zmultiples
Instances for ↥add_subgroup.zmultiples
@[simp]
theorem
add_subgroup.range_zmultiples_hom
{A : Type u_2}
[add_group A]
(a : A) :
(⇑(zmultiples_hom A) a).range = add_subgroup.zmultiples a
@[simp]
@[norm_cast]
@[simp]
theorem
add_subgroup.zsmul_mem_zmultiples
{G : Type u_1}
[add_group G]
(g : G)
(k : ℤ) :
k • g ∈ add_subgroup.zmultiples g
@[simp]
theorem
add_subgroup.nsmul_mem_zmultiples
{G : Type u_1}
[add_group G]
(g : G)
(k : ℕ) :
k • g ∈ add_subgroup.zmultiples g
@[simp]
theorem
add_subgroup.forall_zmultiples
{G : Type u_1}
[add_group G]
{x : G}
{p : ↥(add_subgroup.zmultiples x) → Prop} :
theorem
add_subgroup.forall_mem_zmultiples
{G : Type u_1}
[add_group G]
{x : G}
{p : G → Prop} :
(∀ (g : G), g ∈ add_subgroup.zmultiples x → p g) ↔ ∀ (m : ℤ), p (m • x)
@[simp]
theorem
add_subgroup.exists_zmultiples
{G : Type u_1}
[add_group G]
{x : G}
{p : ↥(add_subgroup.zmultiples x) → Prop} :
@[protected, instance]
@[simp]
theorem
add_subgroup.int_cast_mul_mem_zmultiples
{R : Type u_4}
[ring R]
(r : R)
(k : ℤ) :
↑k * r ∈ add_subgroup.zmultiples r
@[simp]
@[simp]
theorem
add_monoid_hom.map_zmultiples
{G : Type u_1}
[add_group G]
{N : Type u_3}
[add_group N]
(f : G →+ N)
(x : G) :
@[simp]
theorem
monoid_hom.map_zpowers
{G : Type u_1}
[group G]
{N : Type u_3}
[group N]
(f : G →* N)
(x : G) :
subgroup.map f (subgroup.zpowers x) = subgroup.zpowers (⇑f x)
@[protected, instance]
@[protected, instance]
@[simp]
theorem
subgroup.zpowers_le
{G : Type u_1}
[group G]
{g : G}
{H : subgroup G} :
subgroup.zpowers g ≤ H ↔ g ∈ H
@[simp]
theorem
add_subgroup.zmultiples_le
{G : Type u_1}
[add_group G]
{g : G}
{H : add_subgroup G} :
add_subgroup.zmultiples g ≤ H ↔ g ∈ H
theorem
subgroup.zpowers_le_of_mem
{G : Type u_1}
[group G]
{g : G}
{H : subgroup G} :
g ∈ H → subgroup.zpowers g ≤ H
Alias of the reverse direction of subgroup.zpowers_le
.
theorem
add_subgroup.zmultiples_le_of_mem
{G : Type u_1}
[add_group G]
{g : G}
{H : add_subgroup G} :
g ∈ H → add_subgroup.zmultiples g ≤ H
Alias of the reverse direction of add_subgroup.zmultiples_le
.
@[simp]
theorem
add_subgroup.zmultiples_eq_bot
{G : Type u_1}
[add_group G]
{g : G} :
add_subgroup.zmultiples g = ⊥ ↔ g = 0
@[simp]
theorem
add_subgroup.zmultiples_ne_bot
{G : Type u_1}
[add_group G]
{g : G} :
add_subgroup.zmultiples g ≠ ⊥ ↔ g ≠ 0
@[simp]
@[simp]
theorem
subgroup.centralizer_closure
{G : Type u_1}
[group G]
(S : set G) :
(subgroup.closure S).centralizer = ⨅ (g : G) (H : g ∈ S), (subgroup.zpowers g).centralizer
theorem
add_subgroup.centralizer_closure
{G : Type u_1}
[add_group G]
(S : set G) :
(add_subgroup.closure S).centralizer = ⨅ (g : G) (H : g ∈ S), (add_subgroup.zmultiples g).centralizer
theorem
add_subgroup.center_eq_infi
{G : Type u_1}
[add_group G]
(S : set G)
(hS : add_subgroup.closure S = ⊤) :
add_subgroup.center G = ⨅ (g : G) (H : g ∈ S), (add_subgroup.zmultiples g).centralizer
theorem
subgroup.center_eq_infi
{G : Type u_1}
[group G]
(S : set G)
(hS : subgroup.closure S = ⊤) :
subgroup.center G = ⨅ (g : G) (H : g ∈ S), (subgroup.zpowers g).centralizer
theorem
subgroup.center_eq_infi'
{G : Type u_1}
[group G]
(S : set G)
(hS : subgroup.closure S = ⊤) :
subgroup.center G = ⨅ (g : ↥S), (subgroup.zpowers ↑g).centralizer
theorem
add_subgroup.center_eq_infi'
{G : Type u_1}
[add_group G]
(S : set G)
(hS : add_subgroup.closure S = ⊤) :
add_subgroup.center G = ⨅ (g : ↥S), (add_subgroup.zmultiples ↑g).centralizer