theorem
le_min
{α : Type u}
[linear_order α]
{a b c : α}
(h₁ : c ≤ a)
(h₂ : c ≤ b) :
c ≤ linear_order.min a b
theorem
max_le
{α : Type u}
[linear_order α]
{a b c : α}
(h₁ : a ≤ c)
(h₂ : b ≤ c) :
linear_order.max a b ≤ c
theorem
eq_min
{α : Type u}
[linear_order α]
{a b c : α}
(h₁ : c ≤ a)
(h₂ : c ≤ b)
(h₃ : ∀ {d : α}, d ≤ a → d ≤ b → d ≤ c) :
c = linear_order.min a b
theorem
min_comm
{α : Type u}
[linear_order α]
(a b : α) :
linear_order.min a b = linear_order.min b a
theorem
min_assoc
{α : Type u}
[linear_order α]
(a b c : α) :
linear_order.min (linear_order.min a b) c = linear_order.min a (linear_order.min b c)
theorem
min_left_comm
{α : Type u}
[linear_order α]
(a b c : α) :
linear_order.min a (linear_order.min b c) = linear_order.min b (linear_order.min a c)
@[simp]
@[simp]
theorem
eq_max
{α : Type u}
[linear_order α]
{a b c : α}
(h₁ : a ≤ c)
(h₂ : b ≤ c)
(h₃ : ∀ {d : α}, a ≤ d → b ≤ d → c ≤ d) :
c = linear_order.max a b
theorem
max_comm
{α : Type u}
[linear_order α]
(a b : α) :
linear_order.max a b = linear_order.max b a
theorem
max_assoc
{α : Type u}
[linear_order α]
(a b c : α) :
linear_order.max (linear_order.max a b) c = linear_order.max a (linear_order.max b c)
theorem
max_left_comm
{α : Type u}
[linear_order α]
(a b c : α) :
linear_order.max a (linear_order.max b c) = linear_order.max b (linear_order.max a c)
@[simp]
@[simp]
theorem
min_eq_left_of_lt
{α : Type u}
[linear_order α]
{a b : α}
(h : a < b) :
linear_order.min a b = a
theorem
min_eq_right_of_lt
{α : Type u}
[linear_order α]
{a b : α}
(h : b < a) :
linear_order.min a b = b
theorem
max_eq_left_of_lt
{α : Type u}
[linear_order α]
{a b : α}
(h : b < a) :
linear_order.max a b = a
theorem
max_eq_right_of_lt
{α : Type u}
[linear_order α]
{a b : α}
(h : a < b) :
linear_order.max a b = b
theorem
lt_min
{α : Type u}
[linear_order α]
{a b c : α}
(h₁ : a < b)
(h₂ : a < c) :
a < linear_order.min b c
theorem
max_lt
{α : Type u}
[linear_order α]
{a b c : α}
(h₁ : a < c)
(h₂ : b < c) :
linear_order.max a b < c