Coercions and lifts #
The elaborator tries to insert coercions automatically.
Only instances of has_coe
type class are considered in the process.
Lean also provides a "lifting" operator: ↑a
.
It uses all instances of has_lift
type class.
Every has_coe
instance is also a has_lift
instance.
We recommend users only use has_coe
for coercions that do not produce a lot
of ambiguity.
All coercions and lifts can be identified with the constant coe
.
We use the has_coe_to_fun
type class for encoding coercions from
a type to a function space.
We use the has_coe_to_sort
type class for encoding coercions from
a type to a sort.
- lift : a → b
Can perform a lifting operation ↑a
.
Instances of this typeclass
Instances of other typeclasses for has_lift
- has_lift.has_sizeof_inst
- lift : a → b
Auxiliary class that contains the transitive closure of has_lift
.
Instances of this typeclass
Instances of other typeclasses for has_lift_t
- has_lift_t.has_sizeof_inst
We specify the universes in has_coe
, has_coe_to_fun
, and has_coe_to_sort
explicitly in order to match exactly what appears in Lean4.
- coe : a → b
Instances of this typeclass
- ring_equiv.has_coe_to_non_unital_ring_hom
- coe_bool_to_Prop
- coe_subtype
- string_to_name
- nat_to_format
- string_to_format
- expr.has_coe
- tactic.opt_to_tac
- tactic.ex_to_tac
- lean.parser.has_coe
- smt_tactic.has_coe
- list.bin_tree_to_list
- int.has_coe
- native.float.of_nat_coe
- native.float.of_int_coe
- json.string_coe
- json.int_coe
- json.float_coe
- json.bool_coe
- json.array_coe
- widget.component.has_coe
- widget.html.list_coe
- equiv.coe_embedding
- equiv.perm.coe_embedding
- rel_embedding.rel_hom.has_coe
- rel_iso.rel_embedding.has_coe
- monoid_hom.has_coe_to_one_hom
- add_monoid_hom.has_coe_to_zero_hom
- monoid_hom.has_coe_to_mul_hom
- add_monoid_hom.has_coe_to_add_hom
- monoid_with_zero_hom.has_coe_to_monoid_hom
- monoid_with_zero_hom.has_coe_to_zero_hom
- units.has_coe
- add_units.has_coe
- ring_hom.has_coe_monoid_hom
- coe_pnat_nat
- tactic.abel.expr.has_coe
- fin.fin_to_nat
- tactic.ring.expr.has_coe
- linarith.preprocessor_to_gb_preprocessor
- linarith.global_preprocessor_to_gb_preprocessor
- ring_equiv.has_coe_to_ring_hom
- multiset.has_coe
- sym.has_coe
- distrib_mul_action_hom.has_coe
- distrib_mul_action_hom.has_coe'
- mul_semiring_action_hom.has_coe
- mul_semiring_action_hom.has_coe'
- distrib_mul_action_hom.linear_map.has_coe
- linear_equiv.linear_map.has_coe
- linear_map.coe_is_scalar_tower
- nnreal.real.has_coe
- cycle.has_coe
- nat.primes.coe_nat
- con.to_submonoid
- add_con.to_add_submonoid
- homeomorph.continuous_map.has_coe
- ennreal.has_coe
- alg_hom.coe_ring_hom
- alg_hom.coe_monoid_hom
- alg_hom.coe_add_monoid_hom
- alg_equiv.has_coe_to_ring_equiv
- part.has_coe
- omega_complete_partial_order.order_hom.has_coe
- non_unital_alg_hom.distrib_mul_action_hom.has_coe
- non_unital_alg_hom.mul_hom.has_coe
- alg_hom.non_unital_alg_hom.has_coe
- continuous_linear_map.linear_map.has_coe
- continuous_linear_equiv.continuous_linear_map.has_coe
- affine_equiv.equiv.has_coe
- affine_equiv.affine_map.has_coe
- ray_vector.has_coe
- path.continuous_map.has_coe
- initial_seg.rel_embedding.has_coe
- principal_seg.rel_embedding.has_coe
- principal_seg.has_coe_initial_seg
- complex.has_coe
- alternating_map.multilinear_map.has_coe
- matrix.special_linear_group.has_coe_to_matrix
- matrix.special_linear_group.has_coe
- matrix.special_linear_group.has_coe_to_general_linear_group
- matrix.special_linear_group.matrix.GL_pos.has_coe
- efmt.has_coe
- efmt.coe_format
- json.has_coe
Instances of other typeclasses for has_coe
- has_coe.has_sizeof_inst
- coe : a → b
Auxiliary class that contains the transitive closure of has_coe
.
Instances of this typeclass
- con.quotient.has_coe_t
- add_con.quotient.has_coe_t
- coe_trans
- nat.cast_coe
- int.cast_coe
- rat.cast_coe
- pos_num_coe
- num_nat_coe
- znum_coe
- is_R_or_C.algebra_map_coe
- zmod.has_coe_t
- coe_base
- coe_option
- widget.html.to_string_coe
- equiv.has_coe_t
- with_bot.has_coe_t
- with_top.has_coe_t
- complementeds.has_coe_t
- order_iso.has_coe_t
- order_hom_class.order_hom.has_coe_t
- one_hom.has_coe_t
- zero_hom.has_coe_t
- mul_hom.has_coe_t
- add_hom.has_coe_t
- monoid_hom.has_coe_t
- add_monoid_hom.has_coe_t
- monoid_with_zero_hom.has_coe_t
- mul_equiv.has_coe_t
- add_equiv.has_coe_t
- with_one.has_coe_t
- with_zero.has_coe_t
- non_unital_ring_hom.has_coe_t
- ring_hom.has_coe_t
- ring_equiv.has_coe_t
- set_like.set.has_coe_t
- finset.set.has_coe_t
- top_hom.has_coe_t
- bot_hom.has_coe_t
- bounded_order_hom.has_coe_t
- sup_hom.has_coe_t
- inf_hom.has_coe_t
- sup_bot_hom.has_coe_t
- inf_top_hom.has_coe_t
- lattice_hom.has_coe_t
- bounded_lattice_hom.has_coe_t
- Sup_hom.has_coe_t
- Inf_hom.has_coe_t
- frame_hom.has_coe_t
- complete_lattice_hom.has_coe_t
- ultrafilter.filter.has_coe_t
- connected_components.has_coe_t
- quotient_group.has_quotient.quotient.has_coe_t
- quotient_add_group.has_quotient.quotient.has_coe_t
- continuous_map.has_coe_t
- uniform_space.completion.has_coe_t
- locally_bounded_map.has_coe_t
- alg_hom_class.alg_hom.has_coe_t
- alg_equiv_class.alg_equiv.has_coe_t
- non_unital_alg_hom_class.non_unital_alg_hom.has_coe_t
- enat.has_coe_t
- sign_type.has_coe_t
- linear_isometry_equiv.continuous_linear_equiv.has_coe_t
- linear_isometry_equiv.continuous_linear_map.has_coe_t
- ring_con.quotient.has_coe_t
- valuation.has_coe_t
- non_unital_star_alg_hom_class.non_unital_star_alg_hom.has_coe_t
- star_alg_hom_class.star_alg_hom.has_coe_t
- add_circle.has_coe_t
- real.angle.has_coe_t
Instances of other typeclasses for has_coe_t
- has_coe_t.has_sizeof_inst
- coe : Π (x : a), F x
Instances of this typeclass
- coe_fn_trans
- fun_like.has_coe_to_fun
- expr.has_coe_to_fun
- widget.component.has_coe_to_fun
- widget.tc.has_coe_to_fun
- applicative_transformation.has_coe_to_fun
- equiv.has_coe_to_fun
- function.embedding.has_coe_to_fun
- rel_hom.has_coe_to_fun
- rel_embedding.has_coe_to_fun
- rel_iso.has_coe_to_fun
- order_hom.has_coe_to_fun
- one_hom.has_coe_to_fun
- zero_hom.has_coe_to_fun
- mul_hom.has_coe_to_fun
- add_hom.has_coe_to_fun
- monoid_hom.has_coe_to_fun
- add_monoid_hom.has_coe_to_fun
- monoid_with_zero_hom.has_coe_to_fun
- mul_equiv.has_coe_to_fun
- add_equiv.has_coe_to_fun
- additive.has_coe_to_fun
- multiplicative.has_coe_to_fun
- non_unital_ring_hom.has_coe_to_fun
- ring_hom.has_coe_to_fun
- tactic.abel.normal_expr.has_coe_to_fun
- tactic.ring.horner_expr.has_coe_to_fun
- ring_equiv.has_coe_to_fun
- absolute_value.has_coe_to_fun
- cau_seq.has_coe_to_fun
- top_hom.has_coe_to_fun
- bot_hom.has_coe_to_fun
- bounded_order_hom.has_coe_to_fun
- sup_hom.has_coe_to_fun
- inf_hom.has_coe_to_fun
- sup_bot_hom.has_coe_to_fun
- inf_top_hom.has_coe_to_fun
- lattice_hom.has_coe_to_fun
- bounded_lattice_hom.has_coe_to_fun
- mul_action_hom.has_coe_to_fun
- distrib_mul_action_hom.has_coe_to_fun
- mul_semiring_action_hom.has_coe_to_fun
- linear_map.has_coe_to_fun
- linear_equiv.has_coe_to_fun
- dfinsupp.has_coe_to_fun
- finsupp.has_coe_to_fun
- group_seminorm.has_coe_to_fun
- add_group_seminorm.has_coe_to_fun
- nonarch_add_group_seminorm.has_coe_to_fun
- group_norm.has_coe_to_fun
- add_group_norm.has_coe_to_fun
- nonarch_add_group_norm.has_coe_to_fun
- Sup_hom.has_coe_to_fun
- Inf_hom.has_coe_to_fun
- frame_hom.has_coe_to_fun
- complete_lattice_hom.has_coe_to_fun
- compact_exhaustion.has_coe_to_fun
- homeomorph.has_coe_to_fun
- uniform_equiv.has_coe_to_fun
- con.has_coe_to_fun
- add_con.has_coe_to_fun
- continuous_map.has_coe_to_fun
- locally_bounded_map.has_coe_to_fun
- isometry_equiv.has_coe_to_fun
- alg_hom.has_coe_to_fun
- alg_equiv.has_coe_to_fun
- omega_complete_partial_order.chain.has_coe_to_fun
- omega_complete_partial_order.continuous_hom.has_coe_to_fun
- non_unital_alg_hom.has_coe_to_fun
- linear_pmap.has_coe_to_fun
- continuous_linear_map.to_fun
- continuous_linear_equiv.has_coe_to_fun
- local_equiv.has_coe_to_fun
- local_homeomorph.has_coe_to_fun
- affine_map.has_coe_to_fun
- linear_map.general_linear_group.has_coe_to_fun
- affine_equiv.has_coe_to_fun
- closure_operator.has_coe_to_fun
- lower_adjoint.has_coe_to_fun
- path.has_coe_to_fun
- linear_isometry.has_coe_to_fun
- linear_isometry_equiv.has_coe_to_fun
- seminorm.has_coe_to_fun
- multilinear_map.has_coe_to_fun
- continuous_multilinear_map.has_coe_to_fun
- ring_con.has_coe_to_fun
- monoid_algebra.has_coe_to_fun
- add_monoid_algebra.has_coe_to_fun
- valuation.has_coe_to_fun
- add_valuation.has_coe_to_fun
- normed_add_group_hom.has_coe_to_fun
- non_unital_star_alg_hom.has_coe_to_fun
- star_alg_hom.has_coe_to_fun
- star_alg_equiv.has_coe_to_fun
- direct_sum.has_coe_to_fun
- principal_seg.has_coe_to_fun
- affine_isometry.has_coe_to_fun
- affine_isometry_equiv.has_coe_to_fun
- composition_series.has_coe_to_fun
- alternating_map.has_coe_to_fun
- continuous_linear_map.nonlinear_right_inverse.has_coe_to_fun
- matrix.special_linear_group.has_coe_to_fun
- matrix.general_linear_group.has_coe_to_fun
- module.dual.has_coe_to_fun
- bilin_form.has_coe_to_fun
Instances of other typeclasses for has_coe_to_fun
- has_coe_to_fun.has_sizeof_inst
- coe : a → S
Instances of this typeclass
Instances of other typeclasses for has_coe_to_sort
- has_coe_to_sort.has_sizeof_inst
Equations
Instances for lift_t
- coe_decidable_eq
- has_le.le.can_lift
- subtype.can_lift
- with_bot.can_lift
- with_top.can_lift
- ne_zero.coe_trans
- is_unit.can_lift
- is_add_unit.can_lift
- with_one.can_lift
- with_zero.can_lift
- ne_zero.char_zero
- ne_zero.pnat
- nat.can_lift_pnat
- int.can_lift_pnat
- rat.can_lift
- finset.finset_coe.can_lift
- set.finite.can_lift
- nnreal.can_lift
- ultrafilter.ne_bot
- subgroup.is_closed_of_discrete
- add_subgroup.is_closed_of_discrete
- ennreal.can_lift
- enat.can_lift
- part_enat.part.dom.can_lift
- cardinal.can_lift_cardinal_nat
- topological_space.opens.is_open.can_lift
- topological_space.open_nhds_of.can_lift_set
- ideal.is_maximal.is_closed
- skew_adjoint.is_star_normal
- complex.can_lift
- invertible_of_pos
- invertible_succ
- linear_map.can_lift_continuous_linear_map
- topological_space.compacts.is_compact.can_lift
Instances for ↥lift_t
Equations
User level coercion operators #
Equations
Equations
Notation #
Transitive closure for has_lift
, has_coe
, has_coe_to_fun
#
We add this instance directly into has_coe_t
to avoid non-termination.
Suppose coe_option had type (has_coe a (option a))
.
Then, we can loop when searching a coercion from α
to β
(has_coe_t α β)
coe_trans at (has_coe_t α β)
(has_coe α ?b₁) and (has_coe_t ?b₁ c)
coe_option at (has_coe α ?b₁)
?b₁ := option α
coe_trans at (has_coe_t (option α) β)
(has_coe (option α) ?b₂) and (has_coe_t ?b₂ β)
coe_option at (has_coe (option α) ?b₂)
?b₂ := option (option α))
...
Equations
- coe_option = {coe := λ (x : a), option.some x}
- coe : a → b
Auxiliary transitive closure for has_coe
which does not contain
instances such as coe_option
.
They would produce non-termination when combined with coe_fn_trans
and coe_sort_trans
.
Instances of this typeclass
Instances of other typeclasses for has_coe_t_aux
- has_coe_t_aux.has_sizeof_inst
Equations
- coe_trans_aux = {coe := λ (x : a), has_coe_t_aux.coe (coe_b x)}
Equations
- coe_base_aux = {coe := coe_b _inst_1}
Equations
- coe_fn_trans = {coe := λ (x : a), ⇑(has_coe_t_aux.coe x)}
Equations
- coe_sort_trans = {coe := λ (x : a), ↥(has_coe_t_aux.coe x)}
Every coercion is also a lift
Equations
- coe_to_lift = {lift := coe_t _inst_1}
Basic coercions #
Tactics such as the simplifier only unfold reducible constants when checking whether two terms are definitionally
equal or a term is a proposition. The motivation is performance.
In particular, when simplifying p -> q
, the tactic simp
only visits p
if it can establish that it is a proposition.
Thus, we mark the following instance as @[reducible]
, otherwise simp
will not visit ↑p
when simplifying ↑p -> q
.
Equations
- coe_decidable_eq x = show decidable (x = bool.tt), from bool.decidable_eq x bool.tt
Equations
- coe_subtype = {coe := subtype.val (λ (x : a), p x)}
Basic lifts #
Remark: we can't use [has_lift_t a₂ a₁]
since it will produce non-termination whenever a type class resolution
problem does not have a solution.
Equations
- lift_fn_range = {lift := λ (f : a → b₁) (x : a), ↑(f x)}
A dependent version of lift_fn_range
.
Equations
- lift_pi_range = {lift := λ (f : Π (i : α), A i) (i : α), ↑(f i)}
Equations
- lift_fn_dom = {lift := λ (f : a₁ → b) (x : a₂), f ↑x}