A set of elements of type α; implemented as a predicate α → Prop.
Instances for set
        
        - set.has_mem
 - set.has_emptyc
 - set.has_insert
 - set.has_singleton
 - set.has_sep
 - set.is_lawful_singleton
 - set.has_le
 - set.has_subset
 - set.boolean_algebra
 - set.has_ssubset
 - set.has_union
 - set.has_inter
 - set.has_coe_to_sort
 - set.inhabited
 - set.has_subset.subset.is_refl
 - set.has_subset.subset.is_trans
 - set.has_subset.subset.is_antisymm
 - set.has_ssubset.ssubset.is_irrefl
 - set.has_ssubset.ssubset.is_trans
 - set.has_ssubset.ssubset.is_asymm
 - set.has_ssubset.ssubset.is_nonstrict_strict_order
 - set.unique_empty
 - set.nontrivial_of_nonempty
 - set.union_is_assoc
 - set.union_is_comm
 - set.inter_is_assoc
 - set.inter_is_comm
 - set.can_lift
 - set.has_Inf
 - set.has_Sup
 - set.complete_boolean_algebra
 - set.order_top
 - set.has_involutive_inv
 - set.has_involutive_neg
 - set_like.set.has_coe_t
 - finset.set.has_coe_t
 - set.monad
 - set.is_lawful_monad
 - set.is_comm_applicative
 - set.alternative
 - infinite.set
 - set.fintype
 - set.finite'
 - finite.set.finite
 - set.finite.can_lift
 - set.smul_comm_class_set
 - set.vadd_comm_class_set
 - set.smul_comm_class_set'
 - set.vadd_comm_class_set'
 - set.smul_comm_class_set''
 - set.vadd_comm_class_set''
 - set.smul_comm_class
 - set.vadd_comm_class
 - set.is_scalar_tower
 - set.vadd_assoc_class
 - set.is_scalar_tower'
 - set.vadd_assoc_class'
 - set.is_scalar_tower''
 - set.vadd_assoc_class''
 - set.is_central_scalar
 - set.is_central_vadd
 - set.no_zero_smul_divisors
 - set.no_zero_smul_divisors_set
 - set.no_zero_divisors
 - set.has_vsub
 - set.is_atomistic
 - set.is_coatomistic
 - filter.has_mem
 - filter_basis.has_mem
 - ultrafilter.has_mem
 - small_set
 - topological_space.opens.is_open.can_lift
 - topological_space.open_nhds_of.can_lift_set
 - group_filter_basis.has_mem
 - add_group_filter_basis.has_mem
 - ring_filter_basis.has_mem
 - module_filter_basis.group_filter_basis.has_mem
 - set.has_involutive_star
 - set.has_trivial_star
 - topological_space.compacts.is_compact.can_lift
 
The set {x | p x} of elements satisfying the predicate p.
Instances for ↥set_of
        
    @[protected, instance]
    Equations
- set.has_mem = {mem := λ (x : α) (s : set α), s x}
 
@[simp]
@[protected, instance]
    Equations
- set.has_emptyc = {emptyc := {x : α | false}}
 
The set that contains all elements of a type.
Instances for set.univ
        
        
    Instances for ↥set.univ
        
    @[protected, instance]
    
@[protected, instance]
    Equations
- set.has_singleton = {singleton := λ (a : α), {b : α | b = a}}
 
@[protected, instance]