scilib documentation

linear_algebra.free_module.finite.rank

Rank of finite free modules #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This is a basic API for the rank of finite free modules.

The rank of a finite module is finite.

@[simp]

If M is finite, finrank M = rank M.

The finrank of a free module M over R is the cardinality of choose_basis_index R M.

@[simp]

The finrank of (ι →₀ R) is fintype.card ι.

theorem finite_dimensional.finrank_pi (R : Type u) [ring R] [strong_rank_condition R] {ι : Type v} [fintype ι] :

The finrank of (ι → R) is fintype.card ι.

@[simp]
theorem finite_dimensional.finrank_direct_sum (R : Type u) [ring R] [strong_rank_condition R] {ι : Type v} [fintype ι] (M : ι Type w) [Π (i : ι), add_comm_group (M i)] [Π (i : ι), module R (M i)] [ (i : ι), module.free R (M i)] [ (i : ι), module.finite R (M i)] :
finite_dimensional.finrank R (direct_sum ι (λ (i : ι), M i)) = finset.univ.sum (λ (i : ι), finite_dimensional.finrank R (M i))

The finrank of the direct sum is the sum of the finranks.

@[simp]

The finrank of M × N is (finrank R M) + (finrank R N).

theorem finite_dimensional.finrank_pi_fintype (R : Type u) [ring R] [strong_rank_condition R] {ι : Type v} [fintype ι] {M : ι Type w} [Π (i : ι), add_comm_group (M i)] [Π (i : ι), module R (M i)] [ (i : ι), module.free R (M i)] [ (i : ι), module.finite R (M i)] :
finite_dimensional.finrank R (Π (i : ι), M i) = finset.univ.sum (λ (i : ι), finite_dimensional.finrank R (M i))

The finrank of a finite product is the sum of the finranks.

theorem finite_dimensional.finrank_matrix (R : Type u) [ring R] [strong_rank_condition R] (m : Type u_1) (n : Type u_2) [fintype m] [fintype n] :

If m and n are fintype, the finrank of m × n matrices is (fintype.card m) * (fintype.card n).

Two finite and free modules are isomorphic if they have the same (finite) rank.

Two finite and free modules are isomorphic if and only if they have the same (finite) rank.

noncomputable def linear_equiv.of_finrank_eq {R : Type u} (M : Type v) (N : Type w) [ring R] [strong_rank_condition R] [add_comm_group M] [module R M] [module.free R M] [module.finite R M] [add_comm_group N] [module R N] [module.free R N] [module.finite R N] (cond : finite_dimensional.finrank R M = finite_dimensional.finrank R N) :

Two finite and free modules are isomorphic if they have the same (finite) rank.

Equations
@[simp]

The finrank of M ⊗[R] N is (finrank R M) * (finrank R N).

The dimension of a submodule is bounded by the dimension of the ambient space.

The dimension of a quotient is bounded by the dimension of the ambient space.

theorem submodule.finrank_map_le {R : Type u} {M : Type v} {N : Type w} [ring R] [strong_rank_condition R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] (f : M →ₗ[R] N) (p : submodule R M) [module.finite R p] :

Pushforwards of finite submodules have a smaller finrank.