Dot product of two vectors #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains some results on the map matrix.dot_product
, which maps two
vectors v w : n → R
to the sum of the entrywise products v i * w i
.
Main results #
matrix.dot_product_std_basis_one
: the dot product ofv
with thei
th standard basis vector isv i
matrix.dot_product_eq_zero_iff
: ifv
's' dot product with allw
is zero, thenv
is zero
Tags #
matrix, reindex
@[simp]
theorem
matrix.dot_product_std_basis_eq_mul
{R : Type v}
{n : Type w}
[semiring R]
[fintype n]
[decidable_eq n]
(v : n → R)
(c : R)
(i : n) :
matrix.dot_product v (⇑(linear_map.std_basis R (λ (_x : n), R) i) c) = v i * c
@[simp]
theorem
matrix.dot_product_std_basis_one
{R : Type v}
{n : Type w}
[semiring R]
[fintype n]
[decidable_eq n]
(v : n → R)
(i : n) :
matrix.dot_product v (⇑(linear_map.std_basis R (λ (_x : n), R) i) 1) = v i
theorem
matrix.dot_product_eq
{R : Type v}
{n : Type w}
[semiring R]
[fintype n]
(v w : n → R)
(h : ∀ (u : n → R), matrix.dot_product v u = matrix.dot_product w u) :
v = w
theorem
matrix.dot_product_eq_iff
{R : Type v}
{n : Type w}
[semiring R]
[fintype n]
{v w : n → R} :
(∀ (u : n → R), matrix.dot_product v u = matrix.dot_product w u) ↔ v = w
theorem
matrix.dot_product_eq_zero
{R : Type v}
{n : Type w}
[semiring R]
[fintype n]
(v : n → R)
(h : ∀ (w : n → R), matrix.dot_product v w = 0) :
v = 0
theorem
matrix.dot_product_eq_zero_iff
{R : Type v}
{n : Type w}
[semiring R]
[fintype n]
{v : n → R} :
(∀ (w : n → R), matrix.dot_product v w = 0) ↔ v = 0
@[simp]
theorem
matrix.dot_product_self_eq_zero
{R : Type v}
{n : Type w}
[fintype n]
[linear_ordered_ring R]
{v : n → R} :
matrix.dot_product v v = 0 ↔ v = 0
@[simp]
theorem
matrix.dot_product_star_self_eq_zero
{R : Type v}
{n : Type w}
[fintype n]
[partial_order R]
[non_unital_ring R]
[star_ordered_ring R]
[no_zero_divisors R]
{v : n → R} :
matrix.dot_product (has_star.star v) v = 0 ↔ v = 0
Note that this applies to ℂ
via complex.strict_ordered_comm_ring
.
@[simp]
theorem
matrix.dot_product_self_star_eq_zero
{R : Type v}
{n : Type w}
[fintype n]
[partial_order R]
[non_unital_ring R]
[star_ordered_ring R]
[no_zero_divisors R]
{v : n → R} :
matrix.dot_product v (has_star.star v) = 0 ↔ v = 0
Note that this applies to ℂ
via complex.strict_ordered_comm_ring
.