scilib documentation

linear_algebra.matrix.general_linear_group

The General Linear group $GL(n, R)$ #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file defines the elements of the General Linear group general_linear_group n R, consisting of all invertible n by n R-matrices.

Main definitions #

Tags #

matrix group, group, matrix inverse

@[reducible]
def matrix.general_linear_group (n : Type u) (R : Type v) [decidable_eq n] [fintype n] [comm_ring R] :
Type (max u v)

GL n R is the group of n by n R-matrices with unit determinant. Defined as a subtype of matrices

def matrix.general_linear_group.det {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :
GL n R →* Rˣ

The determinant of a unit matrix is itself a unit.

Equations
@[simp]
def matrix.general_linear_group.to_lin {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :

The GL n R and general_linear_group R n groups are multiplicatively equivalent

Equations
def matrix.general_linear_group.mk' {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (A : matrix n n R) (h : invertible A.det) :
GL n R

Given a matrix with invertible determinant we get an element of GL n R

Equations
noncomputable def matrix.general_linear_group.mk'' {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (A : matrix n n R) (h : is_unit A.det) :
GL n R

Given a matrix with unit determinant we get an element of GL n R

Equations
def matrix.general_linear_group.mk_of_det_ne_zero {n : Type u} [decidable_eq n] [fintype n] {K : Type u_1} [field K] (A : matrix n n K) (h : A.det 0) :
GL n K

Given a matrix with non-zero determinant over a field, we get an element of GL n K

Equations
theorem matrix.general_linear_group.ext_iff {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (A B : GL n R) :
A = B (i j : n), A i j = B i j
theorem matrix.general_linear_group.ext {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] ⦃A B : GL n R⦄ (h : (i j : n), A i j = B i j) :
A = B

Not marked @[ext] as the ext tactic already solves this.

@[simp]
theorem matrix.general_linear_group.coe_mul {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (A B : GL n R) :
(A * B) = A.mul B
@[simp]
theorem matrix.general_linear_group.coe_one {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :
1 = 1
theorem matrix.general_linear_group.coe_inv {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (A : GL n R) :
def matrix.general_linear_group.to_linear {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :

An element of the matrix general linear group on (n) [fintype n] can be considered as an element of the endomorphism general linear group on n → R.

Equations
@[simp]
theorem matrix.general_linear_group.to_linear_apply {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (A : GL n R) (v : n R) :
def matrix.GL_pos (n : Type u) (R : Type v) [decidable_eq n] [fintype n] [linear_ordered_comm_ring R] :
subgroup (GL n R)

This is the subgroup of nxn matrices with entries over a linear ordered ring and positive determinant.

Equations
Instances for matrix.GL_pos
@[simp]
theorem matrix.mem_GL_pos {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R] (A : GL n R) :
theorem matrix.GL_pos.det_ne_zero {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R] (A : (matrix.GL_pos n R)) :
@[protected, instance]

Formal operation of negation on general linear group on even cardinality n given by negating each element.

Equations
@[simp]
theorem matrix.GL_pos.coe_neg_GL {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R] [fact (even (fintype.card n))] (g : (matrix.GL_pos n R)) :
@[simp]
theorem matrix.GL_pos.coe_neg {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R] [fact (even (fintype.card n))] (g : (matrix.GL_pos n R)) :
@[simp]
theorem matrix.GL_pos.coe_neg_apply {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R] [fact (even (fintype.card n))] (g : (matrix.GL_pos n R)) (i j : n) :
(-g) i j = -g i j
@[protected, instance]
Equations

special_linear_group n R embeds into GL_pos n R

Equations
@[simp]

Coercing a special_linear_group via GL_pos and GL is the same as coercing striaght to a matrix.

@[simp]
theorem matrix.coe_plane_conformal_matrix {R : Type u_1} [field R] (a b : R) (hab : a ^ 2 + b ^ 2 0) :
def matrix.plane_conformal_matrix {R : Type u_1} [field R] (a b : R) (hab : a ^ 2 + b ^ 2 0) :
GL (fin 2) R

The matrix [a, -b; b, a] (inspired by multiplication by a complex number); it is an element of $GL_2(R)$ if a ^ 2 + b ^ 2 is nonzero.

Equations
@[protected, instance]
def matrix.general_linear_group.has_coe_to_fun {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] :
has_coe_to_fun (GL n R) (λ (_x : GL n R), n n R)

This instance is here for convenience, but is not the simp-normal form.

Equations
@[simp]
theorem matrix.general_linear_group.coe_fn_eq_coe {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] (A : GL n R) :