Relations holding pairwise #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines pairwise relations.
Main declarations #
pairwise
:pairwise r
states thatr i j
for alli ≠ j
.set.pairwise
:s.pairwise r
states thatr i j
for alli ≠ j
withi, j ∈ s
.
theorem
pairwise.mono
{α : Type u_1}
{r p : α → α → Prop}
(hr : pairwise r)
(h : ∀ ⦃i j : α⦄, r i j → p i j) :
pairwise p
@[protected]
theorem
function.injective_iff_pairwise_ne
{α : Type u_1}
{ι : Type u_4}
{f : ι → α} :
function.injective f ↔ pairwise (ne on f)
theorem
function.injective.pairwise_ne
{α : Type u_1}
{ι : Type u_4}
{f : ι → α} :
function.injective f → pairwise (ne on f)
Alias of the forward direction of function.injective_iff_pairwise_ne
.
@[protected]
The relation r
holds pairwise on the set s
if r x y
for all distinct x y ∈ s
.
Instances for set.pairwise
theorem
set.pairwise_of_forall
{α : Type u_1}
(s : set α)
(r : α → α → Prop)
(h : ∀ (a b : α), r a b) :
s.pairwise r
theorem
set.pairwise.imp
{α : Type u_1}
{r p : α → α → Prop}
{s : set α}
(h : s.pairwise r)
(hpq : ∀ ⦃a b : α⦄, r a b → p a b) :
s.pairwise p
theorem
set.pairwise.on_injective
{α : Type u_1}
{ι : Type u_4}
{r : α → α → Prop}
{f : ι → α}
{s : set α}
(hs : s.pairwise r)
(hf : function.injective f)
(hfs : ∀ (x : ι), f x ∈ s) :
theorem
pairwise.set_pairwise
{α : Type u_1}
{r : α → α → Prop}
(h : pairwise r)
(s : set α) :
s.pairwise r