theorem
constant_of_has_deriv_right_zero'
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : ℝ → E}
{a b : ℝ}
(hderiv : ∀ (x : ℝ), x ∈ set.Icc a b → has_deriv_at f 0 x)
(h : a ≤ b) :
f b = f a
theorem
antideriv
{E : Type u_2}
{𝕜 : Type u_3}
[is_R_or_C 𝕜]
[normed_add_comm_group E]
[normed_space 𝕜 E]
{f F G : 𝕜 → E}
(hf : ∀ (t : 𝕜), has_deriv_at F (f t) t)
(hg : ∀ (t : 𝕜), has_deriv_at G (f t) t)
(hg' : G 0 = 0) :
theorem
has_deriv_at_linear_no_pow
{𝕜 : Type u_3}
[is_R_or_C 𝕜]
(x : 𝕜) :
has_deriv_at (λ (y : 𝕜), y) 1 x
theorem
antideriv_const'
{E : Type u_2}
{𝕜 : Type u_3}
[is_R_or_C 𝕜]
[normed_add_comm_group E]
[normed_space 𝕜 E]
(f : 𝕜 → E)
{k : E}
(hf : ∀ (x : 𝕜), has_deriv_at f k x) :
theorem
antideriv_first_order_poly'
{E : Type u_2}
{𝕜 : Type u_3}
[is_R_or_C 𝕜]
[normed_add_comm_group E]
[normed_space 𝕜 E]
{k j : E}
(f : 𝕜 → E)
(hf : ∀ (x : 𝕜), has_deriv_at f (x • j + k) x) :