scilib documentation

LeanChemicalTheories / math.deriv

theorem deriv_within_div_pow {C x : } (hx : x 0) (s : set ) (hu : unique_diff_within_at s x) (n : ) :
1 < n deriv_within (λ (y : ), C / y ^ n) s x = -n * C / x ^ (n + 1)
theorem has_deriv_at_div_pow {C x : } (hx : x 0) (n : ) :
1 < n has_deriv_at (λ (y : ), C / y ^ n) (-n * C / x ^ (n + 1)) x
theorem differentiable_at_div_pow {C x : } (hx : x 0) (n : ) :
differentiable_at (λ (y : ), C / y ^ n) x
theorem deriv_div_pow {C x : } (hx : x 0) (n : ) :
1 < n deriv (λ (y : ), C / y ^ n) x = -n * C / x ^ (n + 1)
theorem deriv_inv_rpow {C z : } (hz : 0 < z) (r : ) :
1 r deriv (λ (x : ), C / x ^ r) z = -r * C / z ^ (r + 1)
theorem differentiable_at_inv_rpow {C z : } (hz : 0 < z) (r : ) :
1 r differentiable_at (λ (x : ), C / x ^ r) z
theorem deriv_abs_of_nonneg_rpow {z : } (hpos : (x : ), 0 x) (r : ) :
1 r deriv (λ (x : ), |x ^ r|) z = r * z ^ (r - 1)
theorem deriv_inv_abs_rpow {C z : } (hz : 0 < z) (hC : 0 < C) (hpos : (x : ), 0 < x) (r : ) :
1 r deriv (λ (x : ), |C| / |x ^ r|) z = -r * C / z ^ (r + 1)
theorem differentiable_at_inv_abs_rpow {C z : } (hz : 0 < z) (hC : 0 < C) (hpos : (x : ), 0 < x) (r : ) :
1 r differentiable_at (λ (x : ), |C| / |x ^ r|) z