Lennard-Jones potential function #
We define the properties of Lennard-Jonnes potential function that describes intermolecular
pair potentials in molecular simulations. The commonly used expression is:
$$
E = 4ε [(\frac{σ}{r})^{12} - (\frac{σ}{r})^6]
$$
where:
E
is the intermolecular potential between the two atoms or moleculesε
is the well depth and a measure of how strongly the two particles attract each otherσ
is the distance at which the intermolecular potential between the two particles is zeror
is the distance of separation between both particles
Here we use our own proof of deriv
defined in math.deriv
to show that Lennard-Jones potential has its minimum
at a distance of r = r_min = 2^1/6 σ
, where the potential energy has the value -ε
theorem
LJ.tendsto_at_zero_pow_seven_div_pow_one
:
filter.tendsto (λ (x : ℝ), x ^ 7 / x) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_eight_div_pow_two
:
filter.tendsto (λ (x : ℝ), x ^ 8 / x ^ 2) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_nine_div_pow_three
:
filter.tendsto (λ (x : ℝ), x ^ 9 / x ^ 3) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_ten_div_pow_four
:
filter.tendsto (λ (x : ℝ), x ^ 10 / x ^ 4) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_eleven_div_pow_five
:
filter.tendsto (λ (x : ℝ), x ^ 11 / x ^ 5) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_twelve_div_pow_six
:
filter.tendsto (λ (x : ℝ), x ^ 12 / x ^ 6) (nhds_within 0 (set.Ioi 0)) (nhds 0)