Lennard-Jones potential function #
We define the properties of Lennard-Jonnes potential function that describes intermolecular
pair potentials in molecular simulations. The commonly used expression is:
$$
E = 4ε [(\frac{σ}{r})^{12} - (\frac{σ}{r})^6]
$$
where:
Eis the intermolecular potential between the two atoms or moleculesεis the well depth and a measure of how strongly the two particles attract each otherσis the distance at which the intermolecular potential between the two particles is zeroris the distance of separation between both particles
Here we use our own proof of deriv defined in math.deriv to show that Lennard-Jones potential has its minimum
at a distance of r = r_min = 2^1/6 σ, where the potential energy has the value -ε
theorem
LJ.tendsto_at_zero_pow_seven_div_pow_one
:
filter.tendsto (λ (x : ℝ), x ^ 7 / x) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_eight_div_pow_two
:
filter.tendsto (λ (x : ℝ), x ^ 8 / x ^ 2) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_nine_div_pow_three
:
filter.tendsto (λ (x : ℝ), x ^ 9 / x ^ 3) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_ten_div_pow_four
:
filter.tendsto (λ (x : ℝ), x ^ 10 / x ^ 4) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_eleven_div_pow_five
:
filter.tendsto (λ (x : ℝ), x ^ 11 / x ^ 5) (nhds_within 0 (set.Ioi 0)) (nhds 0)
theorem
LJ.tendsto_at_zero_pow_twelve_div_pow_six
:
filter.tendsto (λ (x : ℝ), x ^ 12 / x ^ 6) (nhds_within 0 (set.Ioi 0)) (nhds 0)