Lattice structure on order homomorphisms #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines the lattice structure on order homomorphisms, which are bundled monotone functions.
Main definitions #
order_hom.complete_lattice
: ifβ
is a complete lattice, so isα →o β
Tags #
monotone map, bundled morphism
@[protected, instance]
def
order_hom.semilattice_sup
{α : Type u_1}
{β : Type u_2}
[preorder α]
[semilattice_sup β] :
semilattice_sup (α →o β)
Equations
- order_hom.semilattice_sup = {sup := has_sup.sup order_hom.has_sup, le := partial_order.le order_hom.partial_order, lt := partial_order.lt order_hom.partial_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _}
@[protected, instance]
def
order_hom.semilattice_inf
{α : Type u_1}
{β : Type u_2}
[preorder α]
[semilattice_inf β] :
semilattice_inf (α →o β)
Equations
- order_hom.semilattice_inf = {inf := has_inf.inf order_hom.has_inf, le := partial_order.le order_hom.partial_order, lt := partial_order.lt order_hom.partial_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, inf_le_left := _, inf_le_right := _, le_inf := _}
@[protected, instance]
Equations
- order_hom.lattice = {sup := semilattice_sup.sup order_hom.semilattice_sup, le := semilattice_sup.le order_hom.semilattice_sup, lt := semilattice_sup.lt order_hom.semilattice_sup, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := semilattice_inf.inf order_hom.semilattice_inf, inf_le_left := _, inf_le_right := _, le_inf := _}
@[protected, instance]
Equations
- order_hom.has_bot = {bot := ⇑(order_hom.const α) ⊥}
@[simp]
theorem
order_hom.has_bot_bot
{α : Type u_1}
{β : Type u_2}
[preorder α]
[preorder β]
[order_bot β] :
⊥ = ⇑(order_hom.const α) ⊥
@[simp]
theorem
order_hom.has_top_top
{α : Type u_1}
{β : Type u_2}
[preorder α]
[preorder β]
[order_top β] :
⊤ = ⇑(order_hom.const α) ⊤
@[protected, instance]
Equations
- order_hom.has_top = {top := ⇑(order_hom.const α) ⊤}
@[simp]
theorem
order_hom.Inf_apply
{α : Type u_1}
{β : Type u_2}
[preorder α]
[complete_lattice β]
(s : set (α →o β))
(x : α) :
@[simp]
theorem
order_hom.Sup_apply
{α : Type u_1}
{β : Type u_2}
[preorder α]
[complete_lattice β]
(s : set (α →o β))
(x : α) :
@[protected, instance]
def
order_hom.complete_lattice
{α : Type u_1}
{β : Type u_2}
[preorder α]
[complete_lattice β] :
complete_lattice (α →o β)
Equations
- order_hom.complete_lattice = {sup := lattice.sup order_hom.lattice, le := lattice.le order_hom.lattice, lt := lattice.lt order_hom.lattice, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := lattice.inf order_hom.lattice, inf_le_left := _, inf_le_right := _, le_inf := _, Sup := has_Sup.Sup order_hom.has_Sup, le_Sup := _, Sup_le := _, Inf := has_Inf.Inf order_hom.has_Inf, Inf_le := _, le_Inf := _, top := order_top.top order_hom.order_top, bot := order_bot.bot order_hom.order_bot, le_top := _, bot_le := _}