The order on Prop
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Instances on Prop
such as distrib_lattice
, bounded_order
, linear_order
.
@[protected, instance]
Propositions form a distributive lattice.
Equations
- Prop.distrib_lattice = {sup := or, le := partial_order.le Prop.partial_order, lt := partial_order.lt Prop.partial_order, le_refl := Prop.distrib_lattice._proof_1, le_trans := Prop.distrib_lattice._proof_2, lt_iff_le_not_le := Prop.distrib_lattice._proof_3, le_antisymm := Prop.distrib_lattice._proof_4, le_sup_left := or.inl, le_sup_right := or.inr, sup_le := Prop.distrib_lattice._proof_5, inf := and, inf_le_left := and.left, inf_le_right := and.right, le_inf := Prop.distrib_lattice._proof_6, le_sup_inf := Prop.distrib_lattice._proof_7}
@[protected, instance]
Propositions form a bounded order.
Equations
- Prop.bounded_order = {top := true, le_top := Prop.bounded_order._proof_1, bot := false, bot_le := false.elim}
@[protected, instance]
Equations
theorem
pi.disjoint_iff
{ι : Type u_1}
{α' : ι → Type u_2}
[Π (i : ι), partial_order (α' i)]
[Π (i : ι), order_bot (α' i)]
{f g : Π (i : ι), α' i} :
theorem
pi.codisjoint_iff
{ι : Type u_1}
{α' : ι → Type u_2}
[Π (i : ι), partial_order (α' i)]
[Π (i : ι), order_top (α' i)]
{f g : Π (i : ι), α' i} :
codisjoint f g ↔ ∀ (i : ι), codisjoint (f i) (g i)
theorem
pi.is_compl_iff
{ι : Type u_1}
{α' : ι → Type u_2}
[Π (i : ι), partial_order (α' i)]
[Π (i : ι), bounded_order (α' i)]
{f g : Π (i : ι), α' i} :