Interactions between relation homomorphisms and sets #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
It is likely that there are better homes for many of these statement, in files further down the import graph.
theorem
rel_hom_class.map_inf
{α : Type u_1}
{β : Type u_2}
{F : Type u_5}
[semilattice_inf α]
[linear_order β]
[rel_hom_class F has_lt.lt has_lt.lt]
(a : F)
(m n : β) :
theorem
rel_hom_class.map_sup
{α : Type u_1}
{β : Type u_2}
{F : Type u_5}
[semilattice_sup α]
[linear_order β]
[rel_hom_class F gt gt]
(a : F)
(m n : β) :
subrel r p
is the inherited relation on a subset.
Instances for subrel
@[protected]
The relation embedding from the inherited relation on a subset.
Equations
- subrel.rel_embedding r p = {to_embedding := function.embedding.subtype (λ (x : α), x ∈ p), map_rel_iff' := _}
@[simp]
theorem
subrel.rel_embedding_apply
{α : Type u_1}
(r : α → α → Prop)
(p : set α)
(a : ↥p) :
⇑(subrel.rel_embedding r p) a = a.val
@[protected, instance]
def
subrel.is_well_order
{α : Type u_1}
(r : α → α → Prop)
[is_well_order α r]
(p : set α) :
is_well_order ↥p (subrel r p)
def
rel_embedding.cod_restrict
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{s : β → β → Prop}
(p : set β)
(f : r ↪r s)
(H : ∀ (a : α), ⇑f a ∈ p) :
Restrict the codomain of a relation embedding.
Equations
- rel_embedding.cod_restrict p f H = {to_embedding := function.embedding.cod_restrict p f.to_embedding H, map_rel_iff' := _}