scilib documentation

order.with_bot

with_bot, with_top #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

Adding a bot or a top to an order.

Main declarations #

def with_bot (α : Type u_1) :
Type u_1

Attach to a type.

Equations
Instances for with_bot
@[protected, instance]
meta def with_bot.has_to_format {α : Type u_1} [has_to_format α] :
@[protected, instance]
def with_bot.has_repr {α : Type u_1} [has_repr α] :
Equations
@[protected, instance]
def with_bot.has_coe_t {α : Type u_1} :
Equations
@[protected, instance]
def with_bot.has_bot {α : Type u_1} :
Equations
@[protected, instance]
meta def with_bot.has_reflect {α : Type} [reflected Type α] [has_reflect α] :
@[protected, instance]
def with_bot.inhabited {α : Type u_1} :
Equations
@[protected, instance]
def with_bot.nontrivial {α : Type u_1} [nonempty α] :
@[norm_cast]
theorem with_bot.coe_inj {α : Type u_1} {a b : α} :
a = b a = b
@[protected]
theorem with_bot.forall {α : Type u_1} {p : with_bot α Prop} :
( (x : with_bot α), p x) p (x : α), p x
@[protected]
theorem with_bot.exists {α : Type u_1} {p : with_bot α Prop} :
( (x : with_bot α), p x) p (x : α), p x
theorem with_bot.none_eq_bot {α : Type u_1} :
theorem with_bot.some_eq_coe {α : Type u_1} (a : α) :
@[simp]
theorem with_bot.bot_ne_coe {α : Type u_1} {a : α} :
@[simp]
theorem with_bot.coe_ne_bot {α : Type u_1} {a : α} :
def with_bot.rec_bot_coe {α : Type u_1} {C : with_bot α Sort u_2} (h₁ : C ) (h₂ : Π (a : α), C a) (n : with_bot α) :
C n

Recursor for with_bot using the preferred forms and ↑a.

Equations
@[simp]
theorem with_bot.rec_bot_coe_bot {α : Type u_1} {C : with_bot α Sort u_2} (d : C ) (f : Π (a : α), C a) :
@[simp]
theorem with_bot.rec_bot_coe_coe {α : Type u_1} {C : with_bot α Sort u_2} (d : C ) (f : Π (a : α), C a) (x : α) :
def with_bot.unbot' {α : Type u_1} (d : α) (x : with_bot α) :
α

Specialization of option.get_or_else to values in with_bot α that respects API boundaries.

Equations
@[simp]
theorem with_bot.unbot'_bot {α : Type u_1} (d : α) :
@[simp]
theorem with_bot.unbot'_coe {α : Type u_1} (d x : α) :
@[norm_cast]
theorem with_bot.coe_eq_coe {α : Type u_1} {a b : α} :
a = b a = b
theorem with_bot.unbot'_eq_iff {α : Type u_1} {d y : α} {x : with_bot α} :
with_bot.unbot' d x = y x = y x = y = d
@[simp]
theorem with_bot.unbot'_eq_self_iff {α : Type u_1} {d : α} {x : with_bot α} :
theorem with_bot.unbot'_eq_unbot'_iff {α : Type u_1} {d : α} {x y : with_bot α} :
def with_bot.map {α : Type u_1} {β : Type u_2} (f : α β) :
with_bot α with_bot β

Lift a map f : α → β to with_bot α → with_bot β. Implemented using option.map.

Equations
@[simp]
theorem with_bot.map_bot {α : Type u_1} {β : Type u_2} (f : α β) :
@[simp]
theorem with_bot.map_coe {α : Type u_1} {β : Type u_2} (f : α β) (a : α) :
theorem with_bot.map_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : α β} {f₂ : α γ} {g₁ : β δ} {g₂ : γ δ} (h : g₁ f₁ = g₂ f₂) (a : α) :
theorem with_bot.ne_bot_iff_exists {α : Type u_1} {x : with_bot α} :
x (a : α), a = x
def with_bot.unbot {α : Type u_1} (x : with_bot α) :
x α

Deconstruct a x : with_bot α to the underlying value in α, given a proof that x ≠ ⊥.

Equations
@[simp]
theorem with_bot.coe_unbot {α : Type u_1} (x : with_bot α) (h : x ) :
(x.unbot h) = x
@[simp]
theorem with_bot.unbot_coe {α : Type u_1} (x : α) (h : x := with_bot.coe_ne_bot) :
x.unbot h = x
@[protected, instance]
def with_bot.can_lift {α : Type u_1} :
can_lift (with_bot α) α coe (λ (r : with_bot α), r )
Equations
@[protected, instance]
def with_bot.has_le {α : Type u_1} [has_le α] :
Equations
@[simp]
theorem with_bot.some_le_some {α : Type u_1} {a b : α} [has_le α] :
@[simp, norm_cast]
theorem with_bot.coe_le_coe {α : Type u_1} {a b : α} [has_le α] :
a b a b
@[simp]
theorem with_bot.none_le {α : Type u_1} [has_le α] {a : with_bot α} :
@[protected, instance]
def with_bot.order_bot {α : Type u_1} [has_le α] :
Equations
@[protected, instance]
def with_bot.order_top {α : Type u_1} [has_le α] [order_top α] :
Equations
theorem with_bot.not_coe_le_bot {α : Type u_1} [has_le α] (a : α) :
theorem with_bot.coe_le {α : Type u_1} {a b : α} [has_le α] {o : option α} :
b o (a o a b)
theorem with_bot.coe_le_iff {α : Type u_1} {a : α} [has_le α] {x : with_bot α} :
a x (b : α), x = b a b
theorem with_bot.le_coe_iff {α : Type u_1} {b : α} [has_le α] {x : with_bot α} :
x b (a : α), x = a a b
@[protected]
theorem is_max.with_bot {α : Type u_1} {a : α} [has_le α] (h : is_max a) :
@[protected, instance]
def with_bot.has_lt {α : Type u_1} [has_lt α] :
Equations
@[simp]
theorem with_bot.some_lt_some {α : Type u_1} {a b : α} [has_lt α] :
@[simp, norm_cast]
theorem with_bot.coe_lt_coe {α : Type u_1} {a b : α} [has_lt α] :
a < b a < b
@[simp]
theorem with_bot.none_lt_some {α : Type u_1} [has_lt α] (a : α) :
theorem with_bot.bot_lt_coe {α : Type u_1} [has_lt α] (a : α) :
@[simp]
theorem with_bot.not_lt_none {α : Type u_1} [has_lt α] (a : with_bot α) :
theorem with_bot.lt_iff_exists_coe {α : Type u_1} [has_lt α] {a b : with_bot α} :
a < b (p : α), b = p a < p
theorem with_bot.lt_coe_iff {α : Type u_1} {b : α} [has_lt α] {x : with_bot α} :
x < b (a : α), x = a a < b
@[protected]
theorem with_bot.bot_lt_iff_ne_bot {α : Type u_1} [has_lt α] {x : with_bot α} :

A version of bot_lt_iff_ne_bot for with_bot that only requires has_lt α, not partial_order α.

@[protected, instance]
def with_bot.preorder {α : Type u_1} [preorder α] :
Equations
theorem with_bot.coe_strict_mono {α : Type u_1} [preorder α] :
theorem with_bot.coe_mono {α : Type u_1} [preorder α] :
theorem with_bot.monotone_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : with_bot α β} :
monotone f monotone (f coe) (x : α), f f x
@[simp]
theorem with_bot.monotone_map_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :
theorem monotone.with_bot_map {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :

Alias of the reverse direction of with_bot.monotone_map_iff.

theorem with_bot.strict_mono_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : with_bot α β} :
strict_mono f strict_mono (f coe) (x : α), f < f x
@[simp]
theorem with_bot.strict_mono_map_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :
theorem strict_mono.with_bot_map {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :

Alias of the reverse direction of with_bot.strict_mono_map_iff.

theorem with_bot.map_le_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α β) (mono_iff : {a b : α}, f a f b a b) (a b : with_bot α) :
theorem with_bot.le_coe_unbot' {α : Type u_1} [preorder α] (a : with_bot α) (b : α) :
theorem with_bot.unbot'_bot_le_iff {α : Type u_1} [has_le α] [order_bot α] {a : with_bot α} {b : α} :
theorem with_bot.unbot'_lt_iff {α : Type u_1} [has_lt α] {a : with_bot α} {b c : α} (ha : a ) :
theorem with_bot.coe_sup {α : Type u_1} [semilattice_sup α] (a b : α) :
(a b) = a b
theorem with_bot.coe_inf {α : Type u_1} [semilattice_inf α] (a b : α) :
(a b) = a b
@[protected, instance]
def with_bot.is_total_le {α : Type u_1} [has_le α] [is_total α has_le.le] :
@[protected, instance]
def with_bot.linear_order {α : Type u_1} [linear_order α] :
Equations
@[norm_cast]
theorem with_bot.coe_min {α : Type u_1} [linear_order α] (x y : α) :
@[norm_cast]
theorem with_bot.coe_max {α : Type u_1} [linear_order α] (x y : α) :
@[protected, instance]
theorem with_bot.lt_iff_exists_coe_btwn {α : Type u_1} [preorder α] [densely_ordered α] [no_min_order α] {a b : with_bot α} :
a < b (x : α), a < x x < b
@[protected, instance]
def with_bot.no_top_order {α : Type u_1} [has_le α] [no_top_order α] [nonempty α] :
@[protected, instance]
def with_bot.no_max_order {α : Type u_1} [has_lt α] [no_max_order α] [nonempty α] :
def with_top (α : Type u_1) :
Type u_1

Attach to a type.

Equations
Instances for with_top
@[protected, instance]
meta def with_top.has_to_format {α : Type u_1} [has_to_format α] :
@[protected, instance]
def with_top.has_repr {α : Type u_1} [has_repr α] :
Equations
@[protected, instance]
def with_top.has_coe_t {α : Type u_1} :
Equations
@[protected, instance]
def with_top.has_top {α : Type u_1} :
Equations
@[protected, instance]
meta def with_top.has_reflect {α : Type} [reflected Type α] [has_reflect α] :
@[protected, instance]
def with_top.inhabited {α : Type u_1} :
Equations
@[protected, instance]
def with_top.nontrivial {α : Type u_1} [nonempty α] :
@[protected]
theorem with_top.forall {α : Type u_1} {p : with_top α Prop} :
( (x : with_top α), p x) p (x : α), p x
@[protected]
theorem with_top.exists {α : Type u_1} {p : with_top α Prop} :
( (x : with_top α), p x) p (x : α), p x
theorem with_top.none_eq_top {α : Type u_1} :
theorem with_top.some_eq_coe {α : Type u_1} (a : α) :
@[simp]
theorem with_top.top_ne_coe {α : Type u_1} {a : α} :
@[simp]
theorem with_top.coe_ne_top {α : Type u_1} {a : α} :
def with_top.rec_top_coe {α : Type u_1} {C : with_top α Sort u_2} (h₁ : C ) (h₂ : Π (a : α), C a) (n : with_top α) :
C n

Recursor for with_top using the preferred forms and ↑a.

Equations
@[simp]
theorem with_top.rec_top_coe_top {α : Type u_1} {C : with_top α Sort u_2} (d : C ) (f : Π (a : α), C a) :
@[simp]
theorem with_top.rec_top_coe_coe {α : Type u_1} {C : with_top α Sort u_2} (d : C ) (f : Π (a : α), C a) (x : α) :
@[protected]
def with_top.to_dual {α : Type u_1} :

with_top.to_dual is the equivalence sending to and any a : α to to_dual a : αᵒᵈ. See with_top.to_dual_bot_equiv for the related order-iso.

Equations
@[protected]
def with_top.of_dual {α : Type u_1} :

with_top.of_dual is the equivalence sending to and any a : αᵒᵈ to of_dual a : α. See with_top.to_dual_bot_equiv for the related order-iso.

Equations
@[protected]
def with_bot.to_dual {α : Type u_1} :

with_bot.to_dual is the equivalence sending to and any a : α to to_dual a : αᵒᵈ. See with_bot.to_dual_top_equiv for the related order-iso.

Equations
@[protected]
def with_bot.of_dual {α : Type u_1} :

with_bot.of_dual is the equivalence sending to and any a : αᵒᵈ to of_dual a : α. See with_bot.to_dual_top_equiv for the related order-iso.

Equations
@[simp]
@[simp]
@[simp]
@[simp]
def with_top.untop' {α : Type u_1} (d : α) (x : with_top α) :
α

Specialization of option.get_or_else to values in with_top α that respects API boundaries.

Equations
@[simp]
theorem with_top.untop'_top {α : Type u_1} (d : α) :
@[simp]
theorem with_top.untop'_coe {α : Type u_1} (d x : α) :
@[norm_cast]
theorem with_top.coe_eq_coe {α : Type u_1} {a b : α} :
a = b a = b
theorem with_top.untop'_eq_iff {α : Type u_1} {d y : α} {x : with_top α} :
with_top.untop' d x = y x = y x = y = d
@[simp]
theorem with_top.untop'_eq_self_iff {α : Type u_1} {d : α} {x : with_top α} :
theorem with_top.untop'_eq_untop'_iff {α : Type u_1} {d : α} {x y : with_top α} :
def with_top.map {α : Type u_1} {β : Type u_2} (f : α β) :
with_top α with_top β

Lift a map f : α → β to with_top α → with_top β. Implemented using option.map.

Equations
@[simp]
theorem with_top.map_top {α : Type u_1} {β : Type u_2} (f : α β) :
@[simp]
theorem with_top.map_coe {α : Type u_1} {β : Type u_2} (f : α β) (a : α) :
theorem with_top.map_comm {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : α β} {f₂ : α γ} {g₁ : β δ} {g₂ : γ δ} (h : g₁ f₁ = g₂ f₂) (a : α) :
theorem with_top.map_to_dual {α : Type u_1} {β : Type u_2} (f : αᵒᵈ βᵒᵈ) (a : with_bot α) :
theorem with_top.map_of_dual {α : Type u_1} {β : Type u_2} (f : α β) (a : with_bot αᵒᵈ) :
theorem with_top.ne_top_iff_exists {α : Type u_1} {x : with_top α} :
x (a : α), a = x
def with_top.untop {α : Type u_1} (x : with_top α) :
x α

Deconstruct a x : with_top α to the underlying value in α, given a proof that x ≠ ⊤.

Equations
@[simp]
theorem with_top.coe_untop {α : Type u_1} (x : with_top α) (h : x ) :
(x.untop h) = x
@[simp]
theorem with_top.untop_coe {α : Type u_1} (x : α) (h : x := with_top.coe_ne_top) :
x.untop h = x
@[protected, instance]
def with_top.can_lift {α : Type u_1} :
can_lift (with_top α) α coe (λ (r : with_top α), r )
Equations
@[protected, instance]
def with_top.has_le {α : Type u_1} [has_le α] :
Equations
@[simp]
@[simp, norm_cast]
theorem with_top.coe_le_coe {α : Type u_1} {a b : α} [has_le α] :
a b a b
@[simp]
theorem with_top.some_le_some {α : Type u_1} {a b : α} [has_le α] :
@[simp]
theorem with_top.le_none {α : Type u_1} [has_le α] {a : with_top α} :
@[protected, instance]
def with_top.order_top {α : Type u_1} [has_le α] :
Equations
@[protected, instance]
def with_top.order_bot {α : Type u_1} [has_le α] [order_bot α] :
Equations
theorem with_top.not_top_le_coe {α : Type u_1} [has_le α] (a : α) :
theorem with_top.le_coe {α : Type u_1} {a b : α} [has_le α] {o : option α} :
a o (o b a b)
theorem with_top.le_coe_iff {α : Type u_1} {b : α} [has_le α] {x : with_top α} :
x b (a : α), x = a a b
theorem with_top.coe_le_iff {α : Type u_1} {a : α} [has_le α] {x : with_top α} :
a x (b : α), x = b a b
@[protected]
theorem is_min.with_top {α : Type u_1} {a : α} [has_le α] (h : is_min a) :
@[protected, instance]
def with_top.has_lt {α : Type u_1} [has_lt α] :
Equations
theorem with_top.to_dual_lt_iff {α : Type u_1} [has_lt α] {a : with_top α} {b : with_bot αᵒᵈ} :
theorem with_top.lt_to_dual_iff {α : Type u_1} [has_lt α] {a : with_bot αᵒᵈ} {b : with_top α} :
@[simp]
theorem with_top.to_dual_lt_to_dual_iff {α : Type u_1} [has_lt α] {a b : with_top α} :
theorem with_top.of_dual_lt_iff {α : Type u_1} [has_lt α] {a : with_top αᵒᵈ} {b : with_bot α} :
theorem with_top.lt_of_dual_iff {α : Type u_1} [has_lt α] {a : with_bot α} {b : with_top αᵒᵈ} :
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem with_bot.map_to_dual {α : Type u_1} {β : Type u_2} (f : αᵒᵈ βᵒᵈ) (a : with_top α) :
theorem with_bot.map_of_dual {α : Type u_1} {β : Type u_2} (f : α β) (a : with_top αᵒᵈ) :
@[simp]
theorem with_bot.to_dual_lt_iff {α : Type u_1} [has_lt α] {a : with_bot α} {b : with_top αᵒᵈ} :
theorem with_bot.lt_to_dual_iff {α : Type u_1} [has_lt α] {a : with_top αᵒᵈ} {b : with_bot α} :
@[simp]
theorem with_bot.to_dual_lt_to_dual_iff {α : Type u_1} [has_lt α] {a b : with_bot α} :
theorem with_bot.of_dual_lt_iff {α : Type u_1} [has_lt α] {a : with_bot αᵒᵈ} {b : with_top α} :
theorem with_bot.lt_of_dual_iff {α : Type u_1} [has_lt α] {a : with_top α} {b : with_bot αᵒᵈ} :
@[simp]
@[simp, norm_cast]
theorem with_top.coe_lt_coe {α : Type u_1} [has_lt α] {a b : α} :
a < b a < b
@[simp]
theorem with_top.some_lt_some {α : Type u_1} [has_lt α] {a b : α} :
theorem with_top.coe_lt_top {α : Type u_1} [has_lt α] (a : α) :
@[simp]
theorem with_top.some_lt_none {α : Type u_1} [has_lt α] (a : α) :
@[simp]
theorem with_top.not_none_lt {α : Type u_1} [has_lt α] (a : with_top α) :
theorem with_top.lt_iff_exists_coe {α : Type u_1} [has_lt α] {a b : with_top α} :
a < b (p : α), a = p p < b
theorem with_top.coe_lt_iff {α : Type u_1} [has_lt α] {a : α} {x : with_top α} :
a < x (b : α), x = b a < b
@[protected]
theorem with_top.lt_top_iff_ne_top {α : Type u_1} [has_lt α] {x : with_top α} :

A version of lt_top_iff_ne_top for with_top that only requires has_lt α, not partial_order α.

@[protected, instance]
def with_top.preorder {α : Type u_1} [preorder α] :
Equations
theorem with_top.coe_strict_mono {α : Type u_1} [preorder α] :
theorem with_top.coe_mono {α : Type u_1} [preorder α] :
theorem with_top.monotone_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : with_top α β} :
monotone f monotone (f coe) (x : α), f x f
@[simp]
theorem with_top.monotone_map_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :
theorem monotone.with_top_map {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :

Alias of the reverse direction of with_top.monotone_map_iff.

theorem with_top.strict_mono_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : with_top α β} :
strict_mono f strict_mono (f coe) (x : α), f x < f
@[simp]
theorem with_top.strict_mono_map_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :
theorem strict_mono.with_top_map {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] {f : α β} :

Alias of the reverse direction of with_top.strict_mono_map_iff.

theorem with_top.map_le_iff {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α β) (a b : with_top α) (mono_iff : {a b : α}, f a f b a b) :
theorem with_top.coe_inf {α : Type u_1} [semilattice_inf α] (a b : α) :
(a b) = a b
theorem with_top.coe_sup {α : Type u_1} [semilattice_sup α] (a b : α) :
(a b) = a b
@[protected, instance]
def with_top.is_total_le {α : Type u_1} [has_le α] [is_total α has_le.le] :
@[protected, instance]
def with_top.linear_order {α : Type u_1} [linear_order α] :
Equations
@[simp, norm_cast]
theorem with_top.coe_min {α : Type u_1} [linear_order α] (x y : α) :
@[simp, norm_cast]
theorem with_top.coe_max {α : Type u_1} [linear_order α] (x y : α) :
theorem with_top.well_founded_gt {α : Type u_1} [preorder α] (h : well_founded gt) :
theorem with_bot.well_founded_gt {α : Type u_1} [preorder α] (h : well_founded gt) :
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
def with_top.is_well_order.gt {α : Type u_1} [preorder α] [h : is_well_order α gt] :
@[protected, instance]
@[protected, instance]
@[protected, instance]
def with_bot.trichotomous.gt {α : Type u_1} [preorder α] [h : is_trichotomous α gt] :
@[protected, instance]
def with_bot.is_well_order.gt {α : Type u_1} [preorder α] [h : is_well_order α gt] :
@[protected, instance]
theorem with_top.lt_iff_exists_coe_btwn {α : Type u_1} [preorder α] [densely_ordered α] [no_max_order α] {a b : with_top α} :
a < b (x : α), a < x x < b
@[protected, instance]
def with_top.no_bot_order {α : Type u_1} [has_le α] [no_bot_order α] [nonempty α] :
@[protected, instance]
def with_top.no_min_order {α : Type u_1} [has_lt α] [no_min_order α] [nonempty α] :