Nilpotent elements #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Main definitions #
An element is said to be nilpotent if some natural-number-power of it equals zero.
Note that we require only the bare minimum assumptions for the definition to make sense. Even
monoid_with_zero
is too strong since nilpotency is important in the study of rings that are only
power-associative.
@[simp]
theorem
is_nilpotent.map
{R S : Type u}
[monoid_with_zero R]
[monoid_with_zero S]
{r : R}
{F : Type u_1}
[monoid_with_zero_hom_class F R S]
(hr : is_nilpotent r)
(f : F) :
is_nilpotent (⇑f r)
theorem
is_reduced_iff
(R : Type u_1)
[has_zero R]
[has_pow R ℕ] :
is_reduced R ↔ ∀ (x : R), is_nilpotent x → x = 0
@[class]
- eq_zero : ∀ (x : R), is_nilpotent x → x = 0
A structure that has zero and pow is reduced if it has no nonzero nilpotent elements.
Instances of this typeclass
@[protected, instance]
@[protected, instance]
theorem
is_nilpotent.eq_zero
{R : Type u}
{x : R}
[has_zero R]
[has_pow R ℕ]
[is_reduced R]
(h : is_nilpotent x) :
x = 0
@[simp]
theorem
is_nilpotent_iff_eq_zero
{R : Type u}
{x : R}
[monoid_with_zero R]
[is_reduced R] :
is_nilpotent x ↔ x = 0
theorem
is_reduced_of_injective
{R S : Type u}
[monoid_with_zero R]
[monoid_with_zero S]
{F : Type u_1}
[monoid_with_zero_hom_class F R S]
(f : F)
(hf : function.injective ⇑f)
[is_reduced S] :
theorem
ring_hom.ker_is_radical_iff_reduced_of_surjective
{R : Type u}
{S : Type u_1}
{F : Type u_2}
[comm_semiring R]
[comm_ring S]
[ring_hom_class F R S]
{f : F}
(hf : function.surjective ⇑f) :
(ring_hom.ker f).is_radical ↔ is_reduced S
theorem
is_radical_iff_span_singleton
{R : Type u}
{y : R}
[comm_semiring R] :
is_radical y ↔ (ideal.span {y}).is_radical
theorem
is_radical_iff_pow_one_lt
{R : Type u}
{y : R}
[monoid_with_zero R]
(k : ℕ)
(hk : 1 < k) :
is_radical y ↔ ∀ (x : R), y ∣ x ^ k → y ∣ x
theorem
is_reduced_iff_pow_one_lt
{R : Type u}
[monoid_with_zero R]
(k : ℕ)
(hk : 1 < k) :
is_reduced R ↔ ∀ (x : R), x ^ k = 0 → x = 0
theorem
commute.is_nilpotent_add
{R : Type u}
{x y : R}
[semiring R]
(h_comm : commute x y)
(hx : is_nilpotent x)
(hy : is_nilpotent y) :
is_nilpotent (x + y)
theorem
commute.is_nilpotent_mul_left
{R : Type u}
{x y : R}
[semiring R]
(h_comm : commute x y)
(h : is_nilpotent x) :
is_nilpotent (x * y)
theorem
commute.is_nilpotent_mul_right
{R : Type u}
{x y : R}
[semiring R]
(h_comm : commute x y)
(h : is_nilpotent y) :
is_nilpotent (x * y)
theorem
commute.is_nilpotent_sub
{R : Type u}
{x y : R}
[ring R]
(h_comm : commute x y)
(hx : is_nilpotent x)
(hy : is_nilpotent y) :
is_nilpotent (x - y)
The nilradical of a commutative semiring is the ideal of nilpotent elements.
Equations
- nilradical R = 0.radical
theorem
nilradical_eq_Inf
(R : Type u_1)
[comm_semiring R] :
nilradical R = has_Inf.Inf {J : ideal R | J.is_prime}
theorem
nilpotent_iff_mem_prime
{R : Type u}
{x : R}
[comm_semiring R] :
is_nilpotent x ↔ ∀ (J : ideal R), J.is_prime → x ∈ J
theorem
nilradical_le_prime
{R : Type u}
[comm_semiring R]
(J : ideal R)
[H : J.is_prime] :
nilradical R ≤ J
@[simp]
@[simp]
theorem
linear_map.is_nilpotent_mul_left_iff
(R : Type u)
{A : Type v}
[comm_semiring R]
[semiring A]
[algebra R A]
(a : A) :
is_nilpotent (linear_map.mul_left R a) ↔ is_nilpotent a
@[simp]
theorem
linear_map.is_nilpotent_mul_right_iff
(R : Type u)
{A : Type v}
[comm_semiring R]
[semiring A]
[algebra R A]
(a : A) :
theorem
module.End.is_nilpotent.mapq
{R : Type u}
{M : Type v}
[ring R]
[add_comm_group M]
[module R M]
{f : module.End R M}
{p : submodule R M}
(hp : p ≤ submodule.comap f p)
(hnp : is_nilpotent f) :
is_nilpotent (p.mapq p f hp)