scilib documentation

set_theory.cardinal.basic

Cardinal Numbers #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

We define cardinal numbers as a quotient of types under the equivalence relation of equinumerity.

Main definitions #

Main instances #

Main Statements #

Implementation notes #

References #

Tags #

cardinal number, cardinal arithmetic, cardinal exponentiation, aleph, Cantor's theorem, König's theorem, Konig's theorem

@[protected, instance]
def cardinal.is_equivalent  :
setoid (Type u)

The equivalence relation on types given by equivalence (bijective correspondence) of types. Quotienting by this equivalence relation gives the cardinal numbers.

Equations
def cardinal.mk  :
Type u cardinal

The cardinal number of a type

Equations
Instances for cardinal.mk
@[protected, instance]
Equations
theorem cardinal.induction_on {p : cardinal Prop} (c : cardinal) (h : (α : Type u_1), p (cardinal.mk α)) :
p c
theorem cardinal.induction_on₂ {p : cardinal cardinal Prop} (c₁ : cardinal) (c₂ : cardinal) (h : (α : Type u_1) (β : Type u_2), p (cardinal.mk α) (cardinal.mk β)) :
p c₁ c₂
theorem cardinal.induction_on₃ {p : cardinal cardinal cardinal Prop} (c₁ : cardinal) (c₂ : cardinal) (c₃ : cardinal) (h : (α : Type u_1) (β : Type u_2) (γ : Type u_3), p (cardinal.mk α) (cardinal.mk β) (cardinal.mk γ)) :
p c₁ c₂ c₃
@[protected]
theorem cardinal.eq {α β : Type u} :
@[simp]
theorem cardinal.mk_def (α : Type u) :
@[simp]
noncomputable def cardinal.out_mk_equiv {α : Type v} :

The representative of the cardinal of a type is equivalent ot the original type.

Equations
theorem cardinal.mk_congr {α β : Type u} (e : α β) :
theorem equiv.cardinal_eq {α β : Type u} (e : α β) :

Alias of cardinal.mk_congr.

def cardinal.map (f : Type u Type v) (hf : Π (α β : Type u), α β f α f β) :

Lift a function between Type*s to a function between cardinals.

Equations
@[simp]
theorem cardinal.map_mk (f : Type u Type v) (hf : Π (α β : Type u), α β f α f β) (α : Type u) :
def cardinal.map₂ (f : Type u Type v Type w) (hf : Π (α β : Type u) (γ δ : Type v), α β γ δ f α γ f β δ) :

Lift a binary operation Type* → Type* → Type* to a binary operation on cardinals.

Equations

The universe lift operation on cardinals. You can specify the universes explicitly with lift.{u v} : cardinal.{v} → cardinal.{max v u}

Equations
@[simp]
theorem cardinal.mk_ulift (α : Type u) :
@[simp]

lift.{(max u v) u} equals lift.{v u}. Using set_option pp.universes true will make it much easier to understand what's happening when using this lemma.

@[simp]

lift.{(max v u) u} equals lift.{v u}. Using set_option pp.universes true will make it much easier to understand what's happening when using this lemma.

@[simp]
theorem cardinal.lift_id' (a : cardinal) :
a.lift = a

A cardinal lifted to a lower or equal universe equals itself.

@[simp]
theorem cardinal.lift_id (a : cardinal) :
a.lift = a

A cardinal lifted to the same universe equals itself.

@[simp]
theorem cardinal.lift_uzero (a : cardinal) :
a.lift = a

A cardinal lifted to the zero universe equals itself.

@[simp]
theorem cardinal.lift_lift (a : cardinal) :
@[protected, instance]

We define the order on cardinal numbers by #α ≤ #β if and only if there exists an embedding (injective function) from α to β.

Equations
@[protected, instance]
Equations
theorem cardinal.le_def (α β : Type u) :
theorem cardinal.mk_le_of_injective {α β : Type u} {f : α β} (hf : function.injective f) :
theorem function.embedding.cardinal_le {α β : Type u} (f : α β) :
theorem cardinal.mk_le_of_surjective {α β : Type u} {f : α β} (hf : function.surjective f) :
theorem cardinal.le_mk_iff_exists_set {c : cardinal} {α : Type u} :
theorem cardinal.mk_subtype_le {α : Type u} (p : α Prop) :
theorem cardinal.mk_set_le {α : Type u} (s : set α) :
theorem cardinal.lift_mk_le {α : Type u} {β : Type v} :
theorem cardinal.lift_mk_le' {α : Type u} {β : Type v} :

A variant of cardinal.lift_mk_le with specialized universes. Because Lean often can not realize it should use this specialization itself, we provide this statement separately so you don't have to solve the specialization problem either.

theorem cardinal.lift_mk_eq {α : Type u} {β : Type v} :
theorem cardinal.lift_mk_eq' {α : Type u} {β : Type v} :

A variant of cardinal.lift_mk_eq with specialized universes. Because Lean often can not realize it should use this specialization itself, we provide this statement separately so you don't have to solve the specialization problem either.

@[simp]
theorem cardinal.lift_le {a b : cardinal} :
a.lift b.lift a b
@[simp]
theorem cardinal.lift_inj {a b : cardinal} :
a.lift = b.lift a = b
@[simp]
theorem cardinal.lift_lt {a b : cardinal} :
a.lift < b.lift a < b
@[protected, instance]
Equations
@[protected, instance]
Equations
theorem cardinal.mk_eq_zero (α : Type u) [is_empty α] :
@[simp]
theorem cardinal.lift_zero  :
0.lift = 0
@[simp]
theorem cardinal.lift_eq_zero {a : cardinal} :
a.lift = 0 a = 0
theorem cardinal.mk_eq_zero_iff {α : Type u} :
theorem cardinal.mk_ne_zero_iff {α : Type u} :
@[simp]
theorem cardinal.mk_ne_zero (α : Type u) [nonempty α] :
@[protected, instance]
Equations
@[protected, instance]
theorem cardinal.mk_eq_one (α : Type u) [unique α] :
@[simp]
theorem set.subsingleton.cardinal_mk_le_one {α : Type u} {s : set α} :

Alias of the reverse direction of cardinal.mk_le_one_iff_set_subsingleton.

@[protected, instance]
Equations
theorem cardinal.add_def (α β : Type u) :
@[simp]
theorem cardinal.mk_sum (α : Type u) (β : Type v) :
@[simp]
theorem cardinal.mk_option {α : Type u} :
@[simp]
theorem cardinal.mk_psum (α : Type u) (β : Type v) :
@[simp]
theorem cardinal.mk_fintype (α : Type u) [fintype α] :
@[protected, instance]
Equations
theorem cardinal.mul_def (α β : Type u) :
@[simp]
theorem cardinal.mk_prod (α : Type u) (β : Type v) :
@[protected, instance]

The cardinal exponential. #α ^ #β is the cardinal of β → α.

Equations
theorem cardinal.power_def (α β : Type u_1) :
theorem cardinal.mk_arrow (α : Type u) (β : Type v) :
@[simp]
theorem cardinal.lift_power (a b : cardinal) :
(a ^ b).lift = a.lift ^ b.lift
@[simp]
theorem cardinal.power_zero {a : cardinal} :
a ^ 0 = 1
@[simp]
theorem cardinal.power_one {a : cardinal} :
a ^ 1 = a
theorem cardinal.power_add {a b c : cardinal} :
a ^ (b + c) = a ^ b * a ^ c
@[protected, instance]
Equations
theorem cardinal.power_bit0 (a b : cardinal) :
a ^ bit0 b = a ^ b * a ^ b
theorem cardinal.power_bit1 (a b : cardinal) :
a ^ bit1 b = a ^ b * a ^ b * a
@[simp]
theorem cardinal.one_power {a : cardinal} :
1 ^ a = 1
@[simp]
@[simp]
theorem cardinal.mk_Prop  :
cardinal.mk Prop = 2
@[simp]
theorem cardinal.zero_power {a : cardinal} :
a 0 0 ^ a = 0
theorem cardinal.power_ne_zero {a : cardinal} (b : cardinal) :
a 0 a ^ b 0
theorem cardinal.mul_power {a b c : cardinal} :
(a * b) ^ c = a ^ c * b ^ c
theorem cardinal.power_mul {a b c : cardinal} :
a ^ (b * c) = (a ^ b) ^ c
@[simp]
theorem cardinal.pow_cast_right (a : cardinal) (n : ) :
a ^ n = a ^ n
@[simp]
theorem cardinal.lift_one  :
1.lift = 1
@[simp]
theorem cardinal.lift_add (a b : cardinal) :
(a + b).lift = a.lift + b.lift
@[simp]
theorem cardinal.lift_mul (a b : cardinal) :
(a * b).lift = a.lift * b.lift
@[simp]
theorem cardinal.lift_bit0 (a : cardinal) :
@[simp]
theorem cardinal.lift_bit1 (a : cardinal) :
theorem cardinal.lift_two  :
2.lift = 2
@[simp]
theorem cardinal.mk_set {α : Type u} :
@[simp]
theorem cardinal.mk_powerset {α : Type u} (s : set α) :

A variant of cardinal.mk_set expressed in terms of a set instead of a Type.

theorem cardinal.lift_two_power (a : cardinal) :
(2 ^ a).lift = 2 ^ a.lift
@[protected]
theorem cardinal.zero_le (a : cardinal) :
0 a
theorem cardinal.zero_power_le (c : cardinal) :
0 ^ c 1
theorem cardinal.power_le_power_left {a b c : cardinal} :
a 0 b c a ^ b a ^ c
theorem cardinal.self_le_power (a : cardinal) {b : cardinal} (hb : 1 b) :
a a ^ b
theorem cardinal.cantor (a : cardinal) :
a < 2 ^ a

Cantor's theorem

@[protected, instance]
theorem cardinal.power_le_max_power_one {a b c : cardinal} (h : b c) :
a ^ b linear_order.max (a ^ c) 1
theorem cardinal.power_le_power_right {a b c : cardinal} :
a b a ^ c b ^ c
theorem cardinal.power_pos {a : cardinal} (b : cardinal) (ha : 0 < a) :
0 < a ^ b
@[protected]
@[protected, instance]
@[simp]
@[protected, instance]
noncomputable def cardinal.succ_order  :

Note that the successor of c is not the same as c + 1 except in the case of finite c.

Equations
theorem cardinal.succ_def (c : cardinal) :
def cardinal.is_limit (c : cardinal) :
Prop

A cardinal is a limit if it is not zero or a successor cardinal. Note that ℵ₀ is a limit cardinal by this definition, but 0 isn't.

Use is_succ_limit if you want to include the c = 0 case.

Equations
@[protected]
theorem cardinal.is_limit.ne_zero {c : cardinal} (h : c.is_limit) :
c 0
theorem cardinal.is_limit.succ_lt {x c : cardinal} (h : c.is_limit) :
x < c order.succ x < c
def cardinal.sum {ι : Type u_1} (f : ι cardinal) :

The indexed sum of cardinals is the cardinality of the indexed disjoint union, i.e. sigma type.

Equations
theorem cardinal.le_sum {ι : Type u_1} (f : ι cardinal) (i : ι) :
@[simp]
theorem cardinal.mk_sigma {ι : Type u_1} (f : ι Type u_2) :
cardinal.mk (Σ (i : ι), f i) = cardinal.sum (λ (i : ι), cardinal.mk (f i))
@[simp]
theorem cardinal.sum_const (ι : Type u) (a : cardinal) :
cardinal.sum (λ (i : ι), a) = (cardinal.mk ι).lift * a.lift
theorem cardinal.sum_const' (ι : Type u) (a : cardinal) :
cardinal.sum (λ (_x : ι), a) = cardinal.mk ι * a
@[simp]
theorem cardinal.sum_add_distrib {ι : Type u_1} (f g : ι cardinal) :
@[simp]
theorem cardinal.sum_add_distrib' {ι : Type u_1} (f g : ι cardinal) :
cardinal.sum (λ (i : ι), f i + g i) = cardinal.sum f + cardinal.sum g
@[simp]
theorem cardinal.lift_sum {ι : Type u} (f : ι cardinal) :
(cardinal.sum f).lift = cardinal.sum (λ (i : ι), (f i).lift)
theorem cardinal.sum_le_sum {ι : Type u_1} (f g : ι cardinal) (H : (i : ι), f i g i) :
theorem cardinal.mk_le_mk_mul_of_mk_preimage_le {α β : Type u} {c : cardinal} (f : α β) (hf : (b : β), cardinal.mk (f ⁻¹' {b}) c) :
theorem cardinal.lift_mk_le_lift_mk_mul_of_lift_mk_preimage_le {α : Type u} {β : Type v} {c : cardinal} (f : α β) (hf : (b : β), (cardinal.mk (f ⁻¹' {b})).lift c) :
theorem cardinal.bdd_above_range {ι : Type u} (f : ι cardinal) :

The range of an indexed cardinal function, whose outputs live in a higher universe than the inputs, is always bounded above.

@[protected, instance]
@[protected, instance]

A set of cardinals is bounded above iff it's small, i.e. it corresponds to an usual ZFC set.

theorem cardinal.bdd_above_image (f : cardinal cardinal) {s : set cardinal} (hs : bdd_above s) :
theorem cardinal.bdd_above_range_comp {ι : Type u} {f : ι cardinal} (hf : bdd_above (set.range f)) (g : cardinal cardinal) :
theorem cardinal.supr_le_sum {ι : Type u_1} (f : ι cardinal) :
theorem cardinal.sum_le_supr_lift {ι : Type u} (f : ι cardinal) :
theorem cardinal.sum_le_supr {ι : Type u} (f : ι cardinal) :
theorem cardinal.sum_nat_eq_add_sum_succ (f : cardinal) :
cardinal.sum f = f 0 + cardinal.sum (λ (i : ), f (i + 1))
@[protected, simp]
theorem cardinal.supr_of_empty {ι : Sort u_1} (f : ι cardinal) [is_empty ι] :
supr f = 0

A variant of csupr_of_empty but with 0 on the RHS for convenience

@[simp]
theorem cardinal.lift_mk_shrink (α : Type u) [small α] :
@[simp]
theorem cardinal.lift_mk_shrink' (α : Type u) [small α] :
@[simp]
theorem cardinal.lift_mk_shrink'' (α : Type (max u v)) [small α] :
def cardinal.prod {ι : Type u} (f : ι cardinal) :

The indexed product of cardinals is the cardinality of the Pi type (dependent product).

Equations
@[simp]
theorem cardinal.mk_pi {ι : Type u} (α : ι Type v) :
cardinal.mk (Π (i : ι), α i) = cardinal.prod (λ (i : ι), cardinal.mk (α i))
@[simp]
theorem cardinal.prod_const (ι : Type u) (a : cardinal) :
cardinal.prod (λ (i : ι), a) = a.lift ^ (cardinal.mk ι).lift
theorem cardinal.prod_const' (ι : Type u) (a : cardinal) :
cardinal.prod (λ (_x : ι), a) = a ^ cardinal.mk ι
theorem cardinal.prod_le_prod {ι : Type u_1} (f g : ι cardinal) (H : (i : ι), f i g i) :
@[simp]
theorem cardinal.prod_eq_zero {ι : Type u_1} (f : ι cardinal) :
cardinal.prod f = 0 (i : ι), f i = 0
theorem cardinal.prod_ne_zero {ι : Type u_1} (f : ι cardinal) :
cardinal.prod f 0 (i : ι), f i 0
@[simp]
theorem cardinal.lift_prod {ι : Type u} (c : ι cardinal) :
(cardinal.prod c).lift = cardinal.prod (λ (i : ι), (c i).lift)
theorem cardinal.prod_eq_of_fintype {α : Type u} [fintype α] (f : α cardinal) :
cardinal.prod f = (finset.univ.prod (λ (i : α), f i)).lift
@[simp]
theorem cardinal.lift_infi {ι : Sort u_1} (f : ι cardinal) :
(infi f).lift = (i : ι), (f i).lift
theorem cardinal.lift_down {a : cardinal} {b : cardinal} :
b a.lift ( (a' : cardinal), a'.lift = b)
theorem cardinal.le_lift_iff {a : cardinal} {b : cardinal} :
b a.lift (a' : cardinal), a'.lift = b a' a
theorem cardinal.lt_lift_iff {a : cardinal} {b : cardinal} :
b < a.lift (a' : cardinal), a'.lift = b a' < a
@[simp]
theorem cardinal.lift_umax_eq {a : cardinal} {b : cardinal} :
a.lift = b.lift a.lift = b.lift

The lift of a supremum is the supremum of the lifts.

theorem cardinal.lift_supr {ι : Type v} {f : ι cardinal} (hf : bdd_above (set.range f)) :
(supr f).lift = (i : ι), (f i).lift

The lift of a supremum is the supremum of the lifts.

theorem cardinal.lift_supr_le {ι : Type v} {f : ι cardinal} {t : cardinal} (hf : bdd_above (set.range f)) (w : (i : ι), (f i).lift t) :
(supr f).lift t

To prove that the lift of a supremum is bounded by some cardinal t, it suffices to show that the lift of each cardinal is bounded by t.

@[simp]
theorem cardinal.lift_supr_le_iff {ι : Type v} {f : ι cardinal} (hf : bdd_above (set.range f)) {t : cardinal} :
(supr f).lift t (i : ι), (f i).lift t
theorem cardinal.lift_supr_le_lift_supr {ι : Type v} {ι' : Type v'} {f : ι cardinal} {f' : ι' cardinal} (hf : bdd_above (set.range f)) (hf' : bdd_above (set.range f')) {g : ι ι'} (h : (i : ι), (f i).lift (f' (g i)).lift) :
(supr f).lift (supr f').lift

To prove an inequality between the lifts to a common universe of two different supremums, it suffices to show that the lift of each cardinal from the smaller supremum if bounded by the lift of some cardinal from the larger supremum.

theorem cardinal.lift_supr_le_lift_supr' {ι : Type v} {ι' : Type v'} {f : ι cardinal} {f' : ι' cardinal} (hf : bdd_above (set.range f)) (hf' : bdd_above (set.range f')) (g : ι ι') (h : (i : ι), (f i).lift (f' (g i)).lift) :
(supr f).lift (supr f').lift

A variant of lift_supr_le_lift_supr with universes specialized via w = v and w' = v'. This is sometimes necessary to avoid universe unification issues.

ℵ₀ is the smallest infinite cardinal.

Equations

Properties about the cast from #

@[simp]
theorem cardinal.mk_fin (n : ) :
@[simp]
theorem cardinal.lift_nat_cast (n : ) :
@[simp]
theorem cardinal.lift_eq_nat_iff {a : cardinal} {n : } :
a.lift = n a = n
@[simp]
theorem cardinal.nat_eq_lift_iff {n : } {a : cardinal} :
n = a.lift n = a
@[simp]
theorem cardinal.lift_le_nat_iff {a : cardinal} {n : } :
@[simp]
theorem cardinal.nat_le_lift_iff {n : } {a : cardinal} :
@[simp]
theorem cardinal.lift_lt_nat_iff {a : cardinal} {n : } :
a.lift < n a < n
@[simp]
theorem cardinal.nat_lt_lift_iff {n : } {a : cardinal} :
n < a.lift n < a
theorem cardinal.mk_coe_finset {α : Type u} {s : finset α} :
theorem cardinal.mk_finset_of_fintype {α : Type u} [fintype α] :
@[simp]
theorem cardinal.mk_finsupp_lift_of_fintype (α : Type u) (β : Type v) [fintype α] [has_zero β] :
theorem cardinal.mk_finsupp_of_fintype (α β : Type u) [fintype α] [has_zero β] :
theorem cardinal.card_le_of_finset {α : Type u_1} (s : finset α) :
@[simp, norm_cast]
theorem cardinal.nat_cast_pow {m n : } :
(m ^ n) = m ^ n
@[simp, norm_cast]
theorem cardinal.nat_cast_le {m n : } :
m n m n
@[simp, norm_cast]
theorem cardinal.nat_cast_lt {m n : } :
m < n m < n
@[protected, instance]
theorem cardinal.nat_cast_inj {m n : } :
m = n m = n
@[simp, norm_cast]
theorem cardinal.nat_succ (n : ) :
@[simp]
theorem cardinal.succ_zero  :
theorem cardinal.card_le_of {α : Type u} {n : } (H : (s : finset α), s.card n) :
theorem cardinal.cantor' (a : cardinal) {b : cardinal} (hb : 1 < b) :
a < b ^ a
theorem cardinal.one_le_iff_pos {c : cardinal} :
1 c 0 < c
theorem cardinal.aleph_0_le {c : cardinal} :
cardinal.aleph_0 c (n : ), n c
theorem cardinal.mk_eq_nat_iff {α : Type u} {n : } :
theorem set.finite.lt_aleph_0 {α : Type u} {S : set α} :

Alias of the reverse direction of cardinal.lt_aleph_0_iff_set_finite.

@[simp]
theorem cardinal.lt_aleph_0_iff_subtype_finite {α : Type u} {p : α Prop} :
cardinal.mk {x // p x} < cardinal.aleph_0 {x : α | p x}.finite
@[simp]
theorem set.countable.le_aleph_0 {α : Type u} {s : set α} :

Alias of the reverse direction of cardinal.le_aleph_0_iff_set_countable.

@[simp]
theorem cardinal.le_aleph_0_iff_subtype_countable {α : Type u} {p : α Prop} :
cardinal.mk {x // p x} cardinal.aleph_0 {x : α | p x}.countable
@[protected, instance]
Equations

See also cardinal.nsmul_lt_aleph_0_iff for a hypothesis-free version.

See also cardinal.aleph_0_le_mul_iff'.

theorem cardinal.eq_one_iff_unique {α : Type u_1} :
@[simp]
@[simp]
theorem cardinal.mk_eq_aleph_0 (α : Type u_1) [countable α] [infinite α] :
@[simp]
noncomputable def cardinal.to_nat  :

This function sends finite cardinals to the corresponding natural, and infinite cardinals to 0.

Equations
@[simp]

to_nat has a right-inverse: coercion.

theorem cardinal.exists_nat_eq_of_le_nat {c : cardinal} {n : } (h : c n) :
(m : ), m n c = m
@[simp]
theorem cardinal.mk_to_nat_of_infinite {α : Type u} [h : infinite α] :
theorem cardinal.to_nat_eq_iff {c : cardinal} {n : } (hn : n 0) :
@[simp]
theorem cardinal.to_nat_congr {α : Type u} {β : Type v} (e : α β) :
theorem cardinal.to_nat_finset_prod {α : Type u} (s : finset α) (f : α cardinal) :
cardinal.to_nat (s.prod (λ (i : α), f i)) = s.prod (λ (i : α), cardinal.to_nat (f i))

This function sends finite cardinals to the corresponding natural, and infinite cardinals to .

Equations
theorem cardinal.sum_lt_prod {ι : Type u_1} (f g : ι cardinal) (H : (i : ι), f i < g i) :

König's theorem

@[simp]
@[simp]
@[simp]
@[simp]
theorem cardinal.mk_singleton {α : Type u} (x : α) :
@[simp]
theorem cardinal.mk_vector (α : Type u) (n : ) :
theorem cardinal.mk_list_eq_sum_pow (α : Type u) :
theorem cardinal.mk_quot_le {α : Type u} {r : α α Prop} :
theorem cardinal.mk_quotient_le {α : Type u} {s : setoid α} :
theorem cardinal.mk_subtype_le_of_subset {α : Type u} {p q : α Prop} (h : ⦃x : α⦄, p x q x) :
@[simp]
theorem cardinal.mk_emptyc (α : Type u) :
theorem cardinal.mk_emptyc_iff {α : Type u} {s : set α} :
@[simp]
theorem cardinal.mk_univ {α : Type u} :
theorem cardinal.mk_image_le {α β : Type u} {f : α β} {s : set α} :
theorem cardinal.mk_image_le_lift {α : Type u} {β : Type v} {f : α β} {s : set α} :
theorem cardinal.mk_range_le {α β : Type u} {f : α β} :
theorem cardinal.mk_range_le_lift {α : Type u} {β : Type v} {f : α β} :
theorem cardinal.mk_range_eq {α β : Type u} (f : α β) (h : function.injective f) :
theorem cardinal.mk_range_eq_of_injective {α : Type u} {β : Type v} {f : α β} (hf : function.injective f) :
theorem cardinal.mk_range_eq_lift {α : Type u} {β : Type v} {f : α β} (hf : function.injective f) :
theorem cardinal.mk_image_eq {α β : Type u} {f : α β} {s : set α} (hf : function.injective f) :
theorem cardinal.mk_Union_le_sum_mk {α ι : Type u} {f : ι set α} :
cardinal.mk ( (i : ι), f i) cardinal.sum (λ (i : ι), cardinal.mk (f i))
theorem cardinal.mk_Union_eq_sum_mk {α ι : Type u} {f : ι set α} (h : (i j : ι), i j disjoint (f i) (f j)) :
cardinal.mk ( (i : ι), f i) = cardinal.sum (λ (i : ι), cardinal.mk (f i))
theorem cardinal.mk_Union_le {α ι : Type u} (f : ι set α) :
cardinal.mk ( (i : ι), f i) cardinal.mk ι * (i : ι), cardinal.mk (f i)
theorem cardinal.mk_sUnion_le {α : Type u} (A : set (set α)) :
theorem cardinal.mk_bUnion_le {ι α : Type u} (A : ι set α) (s : set ι) :
cardinal.mk ( (x : ι) (H : x s), A x) cardinal.mk s * (x : s), cardinal.mk (A x.val)
theorem cardinal.mk_set_eq_nat_iff_finset {α : Type u_1} {s : set α} {n : } :
cardinal.mk s = n (t : finset α), t = s t.card = n
theorem cardinal.mk_eq_nat_iff_finset {α : Type u} {n : } :
theorem cardinal.mk_eq_nat_iff_fintype {α : Type u} {n : } :
theorem cardinal.mk_union_le {α : Type u} (S T : set α) :

The cardinality of a union is at most the sum of the cardinalities of the two sets.

theorem cardinal.mk_union_of_disjoint {α : Type u} {S T : set α} (H : disjoint S T) :
theorem cardinal.mk_insert {α : Type u} {s : set α} {a : α} (h : a s) :
theorem cardinal.mk_sum_compl {α : Type u_1} (s : set α) :
theorem cardinal.mk_le_mk_of_subset {α : Type u_1} {s t : set α} (h : s t) :
theorem cardinal.mk_subtype_mono {α : Type u} {p q : α Prop} (h : (x : α), p x q x) :
cardinal.mk {x // p x} cardinal.mk {x // q x}
theorem cardinal.le_mk_diff_add_mk {α : Type u} (S T : set α) :
theorem cardinal.mk_diff_add_mk {α : Type u} {S T : set α} (h : T S) :
theorem cardinal.mk_image_eq_lift {α : Type u} {β : Type v} (f : α β) (s : set α) (h : function.injective f) :
theorem cardinal.mk_image_eq_of_inj_on_lift {α : Type u} {β : Type v} (f : α β) (s : set α) (h : set.inj_on f s) :
theorem cardinal.mk_image_eq_of_inj_on {α β : Type u} (f : α β) (s : set α) (h : set.inj_on f s) :
theorem cardinal.mk_subtype_of_equiv {α β : Type u} (p : β Prop) (e : α β) :
cardinal.mk {a // p (e a)} = cardinal.mk {b // p b}
theorem cardinal.mk_sep {α : Type u} (s : set α) (t : α Prop) :
cardinal.mk {x ∈ s | t x} = cardinal.mk {x : s | t x.val}
theorem cardinal.mk_preimage_of_injective_lift {α : Type u} {β : Type v} (f : α β) (s : set β) (h : function.injective f) :
theorem cardinal.mk_preimage_of_subset_range_lift {α : Type u} {β : Type v} (f : α β) (s : set β) (h : s set.range f) :
theorem cardinal.mk_preimage_of_injective_of_subset_range_lift {α : Type u} {β : Type v} (f : α β) (s : set β) (h : function.injective f) (h2 : s set.range f) :
theorem cardinal.mk_preimage_of_injective {α β : Type u} (f : α β) (s : set β) (h : function.injective f) :
theorem cardinal.mk_preimage_of_subset_range {α β : Type u} (f : α β) (s : set β) (h : s set.range f) :
theorem cardinal.mk_preimage_of_injective_of_subset_range {α β : Type u} (f : α β) (s : set β) (h : function.injective f) (h2 : s set.range f) :
theorem cardinal.mk_subset_ge_of_subset_image_lift {α : Type u} {β : Type v} (f : α β) {s : set α} {t : set β} (h : t f '' s) :
(cardinal.mk t).lift (cardinal.mk {x ∈ s | f x t}).lift
theorem cardinal.mk_subset_ge_of_subset_image {α β : Type u} (f : α β) {s : set α} {t : set β} (h : t f '' s) :
cardinal.mk t cardinal.mk {x ∈ s | f x t}
theorem cardinal.le_mk_iff_exists_subset {c : cardinal} {α : Type u} {s : set α} :
theorem cardinal.two_le_iff {α : Type u} :
2 cardinal.mk α (x y : α), x y
theorem cardinal.two_le_iff' {α : Type u} (x : α) :
2 cardinal.mk α (y : α), y x
theorem cardinal.mk_eq_two_iff {α : Type u} :
cardinal.mk α = 2 (x y : α), x y {x, y} = set.univ
theorem cardinal.mk_eq_two_iff' {α : Type u} (x : α) :
cardinal.mk α = 2 ∃! (y : α), y x
theorem cardinal.exists_not_mem_of_length_lt {α : Type u_1} (l : list α) (h : (l.length) < cardinal.mk α) :
(z : α), z l
theorem cardinal.three_le {α : Type u_1} (h : 3 cardinal.mk α) (x y : α) :
(z : α), z x z y
noncomputable def cardinal.powerlt (a b : cardinal) :

The function a ^< b, defined as the supremum of a ^ c for c < b.

Equations
theorem cardinal.le_powerlt {b c : cardinal} (a : cardinal) (h : c < b) :
a ^ c a ^< b
theorem cardinal.powerlt_le {a b c : cardinal} :
a ^< b c (x : cardinal), x < b a ^ x c
theorem cardinal.powerlt_le_powerlt_left {a b c : cardinal} (h : b c) :
a ^< b a ^< c
theorem cardinal.powerlt_mono_left (a : cardinal) :
monotone (λ (c : cardinal), a ^< c)
theorem cardinal.powerlt_succ {a b : cardinal} (h : a 0) :
a ^< order.succ b = a ^ b
theorem cardinal.powerlt_min {a b c : cardinal} :
theorem cardinal.powerlt_max {a b c : cardinal} :
theorem cardinal.zero_powerlt {a : cardinal} (h : a 0) :
0 ^< a = 1
@[simp]
theorem cardinal.powerlt_zero {a : cardinal} :
a ^< 0 = 0

Extension for the positivity tactic: The cardinal power of a positive cardinal is positive.