Infinite sums in topological vector spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
    
theorem
has_sum.smul_const
    {ι : Type u_1}
    {R : Type u_2}
    {M : Type u_4}
    [semiring R]
    [topological_space R]
    [topological_space M]
    [add_comm_monoid M]
    [module R M]
    [has_continuous_smul R M]
    {f : ι → R}
    {r : R}
    (hf : has_sum f r)
    (a : M) :
    
theorem
summable.smul_const
    {ι : Type u_1}
    {R : Type u_2}
    {M : Type u_4}
    [semiring R]
    [topological_space R]
    [topological_space M]
    [add_comm_monoid M]
    [module R M]
    [has_continuous_smul R M]
    {f : ι → R}
    (hf : summable f)
    (a : M) :
    
theorem
tsum_smul_const
    {ι : Type u_1}
    {R : Type u_2}
    {M : Type u_4}
    [semiring R]
    [topological_space R]
    [topological_space M]
    [add_comm_monoid M]
    [module R M]
    [has_continuous_smul R M]
    {f : ι → R}
    [t2_space M]
    (hf : summable f)
    (a : M) :
@[protected]
    
theorem
continuous_linear_map.has_sum
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {f : ι → M}
    (φ : M →SL[σ] M₂)
    {x : M}
    (hf : has_sum f x) :
Applying a continuous linear map commutes with taking an (infinite) sum.
    
theorem
has_sum.mapL
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {f : ι → M}
    (φ : M →SL[σ] M₂)
    {x : M}
    (hf : has_sum f x) :
Alias of continuous_linear_map.has_sum.
@[protected]
    
theorem
continuous_linear_map.summable
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {f : ι → M}
    (φ : M →SL[σ] M₂)
    (hf : summable f) :
    
theorem
summable.mapL
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {f : ι → M}
    (φ : M →SL[σ] M₂)
    (hf : summable f) :
Alias of continuous_linear_map.summable.
@[protected]
    
theorem
continuous_linear_map.map_tsum
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    [t2_space M₂]
    {f : ι → M}
    (φ : M →SL[σ] M₂)
    (hf : summable f) :
@[protected]
    
theorem
continuous_linear_equiv.has_sum
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {σ' : R₂ →+* R}
    [ring_hom_inv_pair σ σ']
    [ring_hom_inv_pair σ' σ]
    {f : ι → M}
    (e : M ≃SL[σ] M₂)
    {y : M₂} :
Applying a continuous linear map commutes with taking an (infinite) sum.
@[protected]
    
theorem
continuous_linear_equiv.has_sum'
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {σ' : R₂ →+* R}
    [ring_hom_inv_pair σ σ']
    [ring_hom_inv_pair σ' σ]
    {f : ι → M}
    (e : M ≃SL[σ] M₂)
    {x : M} :
Applying a continuous linear map commutes with taking an (infinite) sum.
@[protected]
    
theorem
continuous_linear_equiv.summable
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {σ' : R₂ →+* R}
    [ring_hom_inv_pair σ σ']
    [ring_hom_inv_pair σ' σ]
    {f : ι → M}
    (e : M ≃SL[σ] M₂) :
    
theorem
continuous_linear_equiv.tsum_eq_iff
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {σ' : R₂ →+* R}
    [ring_hom_inv_pair σ σ']
    [ring_hom_inv_pair σ' σ]
    [t2_space M]
    [t2_space M₂]
    {f : ι → M}
    (e : M ≃SL[σ] M₂)
    {y : M₂} :
@[protected]
    
theorem
continuous_linear_equiv.map_tsum
    {ι : Type u_1}
    {R : Type u_2}
    {R₂ : Type u_3}
    {M : Type u_4}
    {M₂ : Type u_5}
    [semiring R]
    [semiring R₂]
    [add_comm_monoid M]
    [module R M]
    [add_comm_monoid M₂]
    [module R₂ M₂]
    [topological_space M]
    [topological_space M₂]
    {σ : R →+* R₂}
    {σ' : R₂ →+* R}
    [ring_hom_inv_pair σ σ']
    [ring_hom_inv_pair σ' σ]
    [t2_space M]
    [t2_space M₂]
    {f : ι → M}
    (e : M ≃SL[σ] M₂) :