scilib documentation

topology.algebra.infinite_sum.order

Infinite sum in an order #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file provides lemmas about the interaction of infinite sums and order operations.

theorem tsum_le_of_sum_range_le {α : Type u_3} [preorder α] [add_comm_monoid α] [topological_space α] [order_closed_topology α] [t2_space α] {f : α} {c : α} (hf : summable f) (h : (n : ), (finset.range n).sum (λ (i : ), f i) c) :
∑' (n : ), f n c
theorem has_sum_le {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f g : ι α} {a₁ a₂ : α} (h : (i : ι), f i g i) (hf : has_sum f a₁) (hg : has_sum g a₂) :
a₁ a₂
theorem has_sum_mono {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f g : ι α} {a₁ a₂ : α} (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f g) :
a₁ a₂
theorem has_sum_le_of_sum_le {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a a₂ : α} (hf : has_sum f a) (h : (s : finset ι), s.sum (λ (i : ι), f i) a₂) :
a a₂
theorem le_has_sum_of_le_sum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a a₂ : α} (hf : has_sum f a) (h : (s : finset ι), a₂ s.sum (λ (i : ι), f i)) :
a₂ a
theorem has_sum_le_inj {ι : Type u_1} {κ : Type u_2} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a₁ a₂ : α} {g : κ α} (e : ι κ) (he : function.injective e) (hs : (c : κ), c set.range e 0 g c) (h : (i : ι), f i g (e i)) (hf : has_sum f a₁) (hg : has_sum g a₂) :
a₁ a₂
theorem tsum_le_tsum_of_inj {ι : Type u_1} {κ : Type u_2} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {g : κ α} (e : ι κ) (he : function.injective e) (hs : (c : κ), c set.range e 0 g c) (h : (i : ι), f i g (e i)) (hf : summable f) (hg : summable g) :
theorem sum_le_has_sum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a : α} (s : finset ι) (hs : (i : ι), i s 0 f i) (hf : has_sum f a) :
s.sum (λ (i : ι), f i) a
theorem is_lub_has_sum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a : α} (h : (i : ι), 0 f i) (hf : has_sum f a) :
is_lub (set.range (λ (s : finset ι), s.sum (λ (i : ι), f i))) a
theorem le_has_sum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a : α} (hf : has_sum f a) (i : ι) (hb : (b' : ι), b' i 0 f b') :
f i a
theorem sum_le_tsum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} (s : finset ι) (hs : (i : ι), i s 0 f i) (hf : summable f) :
s.sum (λ (i : ι), f i) ∑' (i : ι), f i
theorem le_tsum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} (hf : summable f) (i : ι) (hb : (b' : ι), b' i 0 f b') :
f i ∑' (i : ι), f i
theorem tsum_le_tsum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f g : ι α} (h : (i : ι), f i g i) (hf : summable f) (hg : summable g) :
∑' (i : ι), f i ∑' (i : ι), g i
theorem tsum_mono {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f g : ι α} (hf : summable f) (hg : summable g) (h : f g) :
∑' (n : ι), f n ∑' (n : ι), g n
theorem tsum_le_of_sum_le {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a₂ : α} (hf : summable f) (h : (s : finset ι), s.sum (λ (i : ι), f i) a₂) :
∑' (i : ι), f i a₂
theorem tsum_le_of_sum_le' {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a₂ : α} (ha₂ : 0 a₂) (h : (s : finset ι), s.sum (λ (i : ι), f i) a₂) :
∑' (i : ι), f i a₂
theorem has_sum.nonneg {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {g : ι α} {a : α} (h : (i : ι), 0 g i) (ha : has_sum g a) :
0 a
theorem has_sum.nonpos {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {g : ι α} {a : α} (h : (i : ι), g i 0) (ha : has_sum g a) :
a 0
theorem tsum_nonneg {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {g : ι α} (h : (i : ι), 0 g i) :
0 ∑' (i : ι), g i
theorem tsum_nonpos {ι : Type u_1} {α : Type u_3} [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} (h : (i : ι), f i 0) :
∑' (i : ι), f i 0
theorem has_sum_lt {ι : Type u_1} {α : Type u_3} [ordered_add_comm_group α] [topological_space α] [topological_add_group α] [order_closed_topology α] {f g : ι α} {a₁ a₂ : α} {i : ι} (h : f g) (hi : f i < g i) (hf : has_sum f a₁) (hg : has_sum g a₂) :
a₁ < a₂
theorem has_sum_strict_mono {ι : Type u_1} {α : Type u_3} [ordered_add_comm_group α] [topological_space α] [topological_add_group α] [order_closed_topology α] {f g : ι α} {a₁ a₂ : α} (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f < g) :
a₁ < a₂
theorem tsum_lt_tsum {ι : Type u_1} {α : Type u_3} [ordered_add_comm_group α] [topological_space α] [topological_add_group α] [order_closed_topology α] {f g : ι α} {i : ι} (h : f g) (hi : f i < g i) (hf : summable f) (hg : summable g) :
∑' (n : ι), f n < ∑' (n : ι), g n
theorem tsum_strict_mono {ι : Type u_1} {α : Type u_3} [ordered_add_comm_group α] [topological_space α] [topological_add_group α] [order_closed_topology α] {f g : ι α} (hf : summable f) (hg : summable g) (h : f < g) :
∑' (n : ι), f n < ∑' (n : ι), g n
theorem tsum_pos {ι : Type u_1} {α : Type u_3} [ordered_add_comm_group α] [topological_space α] [topological_add_group α] [order_closed_topology α] {g : ι α} (hsum : summable g) (hg : (i : ι), 0 g i) (i : ι) (hi : 0 < g i) :
0 < ∑' (i : ι), g i
theorem has_sum_zero_iff_of_nonneg {ι : Type u_1} {α : Type u_3} [ordered_add_comm_group α] [topological_space α] [topological_add_group α] [order_closed_topology α] {f : ι α} (hf : (i : ι), 0 f i) :
has_sum f 0 f = 0
theorem le_has_sum' {ι : Type u_1} {α : Type u_3} [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a : α} (hf : has_sum f a) (i : ι) :
f i a
theorem le_tsum' {ι : Type u_1} {α : Type u_3} [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} (hf : summable f) (i : ι) :
f i ∑' (i : ι), f i
theorem has_sum_zero_iff {ι : Type u_1} {α : Type u_3} [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} :
has_sum f 0 (x : ι), f x = 0
theorem tsum_eq_zero_iff {ι : Type u_1} {α : Type u_3} [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} (hf : summable f) :
∑' (i : ι), f i = 0 (x : ι), f x = 0
theorem tsum_ne_zero_iff {ι : Type u_1} {α : Type u_3} [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} (hf : summable f) :
∑' (i : ι), f i 0 (x : ι), f x 0
theorem is_lub_has_sum' {ι : Type u_1} {α : Type u_3} [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] {f : ι α} {a : α} (hf : has_sum f a) :
is_lub (set.range (λ (s : finset ι), s.sum (λ (i : ι), f i))) a

For infinite sums taking values in a linearly ordered monoid, the existence of a least upper bound for the finite sums is a criterion for summability.

This criterion is useful when applied in a linearly ordered monoid which is also a complete or conditionally complete linear order, such as , ℝ≥0, ℝ≥0∞, because it is then easy to check the existence of a least upper bound.

theorem has_sum_of_is_lub_of_nonneg {ι : Type u_1} {α : Type u_3} [linear_ordered_add_comm_monoid α] [topological_space α] [order_topology α] {f : ι α} (i : α) (h : (i : ι), 0 f i) (hf : is_lub (set.range (λ (s : finset ι), s.sum (λ (i : ι), f i))) i) :
theorem has_sum_of_is_lub {ι : Type u_1} {α : Type u_3} [canonically_linear_ordered_add_monoid α] [topological_space α] [order_topology α] {f : ι α} (b : α) (hf : is_lub (set.range (λ (s : finset ι), s.sum (λ (i : ι), f i))) b) :
theorem summable_abs_iff {ι : Type u_1} {α : Type u_3} [linear_ordered_add_comm_group α] [uniform_space α] [uniform_add_group α] [complete_space α] {f : ι α} :
summable (λ (x : ι), |f x|) summable f
theorem summable.abs {ι : Type u_1} {α : Type u_3} [linear_ordered_add_comm_group α] [uniform_space α] [uniform_add_group α] [complete_space α] {f : ι α} :
summable f summable (λ (x : ι), |f x|)

Alias of the reverse direction of summable_abs_iff.

theorem summable.of_abs {ι : Type u_1} {α : Type u_3} [linear_ordered_add_comm_group α] [uniform_space α] [uniform_add_group α] [complete_space α] {f : ι α} :
summable (λ (x : ι), |f x|) summable f

Alias of the forward direction of summable_abs_iff.

theorem finite_of_summable_const {ι : Type u_1} {α : Type u_3} [linear_ordered_add_comm_group α] [topological_space α] [archimedean α] [order_closed_topology α] {b : α} (hb : 0 < b) (hf : summable (λ (i : ι), b)) :
theorem summable.tendsto_top_of_pos {α : Type u_3} [linear_ordered_field α] [topological_space α] [order_topology α] {f : α} (hf : summable f⁻¹) (hf' : (n : ), 0 < f n) :