Continuity of star #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines the has_continuous_star typeclass, along with instances on pi, prod,
mul_opposite, and units.
@[class]
    - continuous_star : continuous has_star.star
 
Basic hypothesis to talk about a topological space with a continuous star operator.
    
theorem
continuous_on_star
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    {s : set R} :
    
theorem
continuous_within_at_star
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    {s : set R}
    {x : R} :
    
theorem
continuous_at_star
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    {x : R} :
    
theorem
tendsto_star
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    (a : R) :
filter.tendsto has_star.star (nhds a) (nhds (has_star.star a))
    
theorem
filter.tendsto.star
    {α : Type u_2}
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    {f : α → R}
    {l : filter α}
    {y : R}
    (h : filter.tendsto f l (nhds y)) :
filter.tendsto (λ (x : α), has_star.star (f x)) l (nhds (has_star.star y))
@[continuity]
    
theorem
continuous.star
    {α : Type u_2}
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    [topological_space α]
    {f : α → R}
    (hf : continuous f) :
continuous (λ (x : α), has_star.star (f x))
    
theorem
continuous_at.star
    {α : Type u_2}
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    [topological_space α]
    {f : α → R}
    {x : α}
    (hf : continuous_at f x) :
continuous_at (λ (x : α), has_star.star (f x)) x
    
theorem
continuous_on.star
    {α : Type u_2}
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    [topological_space α]
    {f : α → R}
    {s : set α}
    (hf : continuous_on f s) :
continuous_on (λ (x : α), has_star.star (f x)) s
    
theorem
continuous_within_at.star
    {α : Type u_2}
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    [topological_space α]
    {f : α → R}
    {s : set α}
    {x : α}
    (hf : continuous_within_at f s x) :
continuous_within_at (λ (x : α), has_star.star (f x)) s x
The star operation bundled as a continuous map.
Equations
- star_continuous_map = {to_fun := has_star.star _inst_2, continuous_to_fun := _}
 
@[simp]
    
theorem
star_continuous_map_apply
    {R : Type u_3}
    [topological_space R]
    [has_star R]
    [has_continuous_star R]
    (ᾰ : R) :
@[protected, instance]
    
def
prod.has_continuous_star
    {R : Type u_3}
    {S : Type u_4}
    [has_star R]
    [has_star S]
    [topological_space R]
    [topological_space S]
    [has_continuous_star R]
    [has_continuous_star S] :
has_continuous_star (R × S)
@[protected, instance]
    
def
pi.has_continuous_star
    {ι : Type u_1}
    {C : ι → Type u_2}
    [Π (i : ι), topological_space (C i)]
    [Π (i : ι), has_star (C i)]
    [∀ (i : ι), has_continuous_star (C i)] :
has_continuous_star (Π (i : ι), C i)
@[protected, instance]
    
def
mul_opposite.has_continuous_star
    {R : Type u_3}
    [has_star R]
    [topological_space R]
    [has_continuous_star R] :
@[protected, instance]
    
def
units.has_continuous_star
    {R : Type u_3}
    [monoid R]
    [star_semigroup R]
    [topological_space R]
    [has_continuous_star R] :